UNet segmentation network of COVID-19 CT images with multi-scale attention

过度拟合 计算机科学 分割 编码器 人工智能 一般化 图像分割 深度学习 频道(广播) 模式识别(心理学) 数据挖掘 机器学习 人工神经网络 数学 操作系统 数学分析 计算机网络
作者
Mingju Chen,Sihang Yi,Mei Yang,Zhiwen Yang,Xingyue Zhang
出处
期刊:Mathematical Biosciences and Engineering [Arizona State University]
卷期号:20 (9): 16762-16785 被引量:2
标识
DOI:10.3934/mbe.2023747
摘要

<abstract> <p>In recent years, the global outbreak of COVID-19 has posed an extremely serious life-safety risk to humans, and in order to maximize the diagnostic efficiency of physicians, it is extremely valuable to investigate the methods of lesion segmentation in images of COVID-19. Aiming at the problems of existing deep learning models, such as low segmentation accuracy, poor model generalization performance, large model parameters and difficult deployment, we propose an UNet segmentation network integrating multi-scale attention for COVID-19 CT images. Specifically, the UNet network model is utilized as the base network, and the structure of multi-scale convolutional attention is proposed in the encoder stage to enhance the network's ability to capture multi-scale information. Second, a local channel attention module is proposed to extract spatial information by modeling local relationships to generate channel domain weights, to supplement detailed information about the target region to reduce information redundancy and to enhance important information. Moreover, the network model encoder segment uses the Meta-ACON activation function to avoid the overfitting phenomenon of the model and to improve the model's representational ability. A large number of experimental results on publicly available mixed data sets show that compared with the current mainstream image segmentation algorithms, the pro-posed method can more effectively improve the accuracy and generalization performance of COVID-19 lesions segmentation and provide help for medical diagnosis and analysis.</p> </abstract>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ori完成签到,获得积分10
2秒前
2秒前
2秒前
彭于晏应助爱笑的宝马采纳,获得10
2秒前
babalala发布了新的文献求助10
4秒前
00发布了新的文献求助30
5秒前
两栖玩家完成签到 ,获得积分10
6秒前
you完成签到 ,获得积分10
6秒前
wanci应助lucky采纳,获得10
7秒前
8秒前
烟花应助坦率的寻双采纳,获得10
8秒前
yuyuyuyu完成签到,获得积分10
8秒前
开放夏旋发布了新的文献求助30
8秒前
纯情的汉堡完成签到 ,获得积分10
8秒前
gxj完成签到,获得积分10
13秒前
15秒前
16秒前
16秒前
16秒前
heolmes完成签到,获得积分10
19秒前
20秒前
8R60d8应助felix采纳,获得10
24秒前
SYLH应助felix采纳,获得30
24秒前
核桃应助felix采纳,获得10
24秒前
ludong_0应助felix采纳,获得10
24秒前
NexusExplorer应助felix采纳,获得10
24秒前
坦率的寻双完成签到,获得积分10
25秒前
田様应助xing采纳,获得10
28秒前
852应助yahong采纳,获得10
28秒前
charliechen完成签到 ,获得积分10
28秒前
传奇3应助开放夏旋采纳,获得10
29秒前
lijinquan1988完成签到,获得积分10
31秒前
zz发布了新的文献求助10
31秒前
33秒前
皮皮完成签到 ,获得积分10
33秒前
情怀应助1.1采纳,获得10
34秒前
parasite完成签到,获得积分10
36秒前
Zj完成签到,获得积分10
37秒前
ZKG完成签到 ,获得积分10
38秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899773
求助须知:如何正确求助?哪些是违规求助? 3444383
关于积分的说明 10834833
捐赠科研通 3169381
什么是DOI,文献DOI怎么找? 1751093
邀请新用户注册赠送积分活动 846469
科研通“疑难数据库(出版商)”最低求助积分说明 789226