A Multi-Layer Model Based on Transformer and Deep Learning for Traffic Flow Prediction

计算机科学 深度学习 变压器 人工智能 工程类 电气工程 电压
作者
Hexuan Hu,Qiang Hu,Guoping Tan,Ye Zhang,Zhen-Zhou Lin
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 443-451 被引量:5
标识
DOI:10.1109/tits.2023.3311397
摘要

Using traffic data to accurately predict the traffic flow at a certain time in the future can alleviate problems such as traffic congestion, which plays an important role in the healthy transportation and economic development of cities. However, current traffic flow prediction models rely on human experience and only consider the advantages of single machine learning model. Therefore, in this work, we propose a multi-layer model based on transformer and deep learning for traffic flow prediction (MTDLTFP). The MTDLTFP model first draws on the idea of transformer model, which uses multiple encoders and decoders to perform feature extraction on the initial traffic data without human experience. In addition, in the prediction stage, the MTDLTFP model using deep learning technology, which input the hidden features into the convolutional neural network (CNN) and multi-layer feedforward neural network (MFNN) to obtain the prediction score respectively. The CNN model can captures the correlation information between the hidden features, and the MFNN can captures the nonlinear relationship between the features. Finally, we use a linear model to combine the two prediction scores, which can make the final prediction value take into account the common advantages of both models. Multiple experimental results on two real datasets demonstrate the effectiveness of the MTDLTFP model. The experimental results on the $WorkDay$ dataset are as follows, with the RMSE value of 0.191, MAE value of 0.165. The experimental results on the $HoliDay$ dataset are as follows, with RMSE value of 0.227, MAE value of 0.192.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
神途完成签到,获得积分10
4秒前
烟花应助火星上的觅山采纳,获得10
5秒前
7秒前
好好好1234完成签到,获得积分10
7秒前
可爱的函函应助奈布采纳,获得10
8秒前
9秒前
科研通AI5应助22采纳,获得10
10秒前
11秒前
wenqin发布了新的文献求助10
12秒前
小旋风发布了新的文献求助30
12秒前
闫栋完成签到 ,获得积分10
13秒前
13秒前
可靠的新柔完成签到,获得积分10
14秒前
大个应助小威采纳,获得10
14秒前
14秒前
15秒前
17秒前
xinyue发布了新的文献求助10
18秒前
拒绝去偏旁完成签到,获得积分10
19秒前
19秒前
19秒前
火星上的觅山完成签到,获得积分10
20秒前
jungwoo123发布了新的文献求助10
21秒前
白一丹发布了新的文献求助10
22秒前
26秒前
科研通AI5应助猪肉铺采纳,获得10
26秒前
27秒前
眼睛大的冰安完成签到,获得积分10
27秒前
22发布了新的文献求助10
27秒前
jungwoo123完成签到,获得积分10
28秒前
123完成签到,获得积分10
28秒前
llllllu发布了新的文献求助10
31秒前
大模型应助橘艾采纳,获得30
32秒前
April完成签到,获得积分10
32秒前
太叔丹翠发布了新的文献求助10
32秒前
lulu2024完成签到,获得积分10
33秒前
梓枫发布了新的文献求助10
33秒前
yunlu发布了新的文献求助10
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810566
求助须知:如何正确求助?哪些是违规求助? 3355069
关于积分的说明 10374127
捐赠科研通 3071648
什么是DOI,文献DOI怎么找? 1687051
邀请新用户注册赠送积分活动 811395
科研通“疑难数据库(出版商)”最低求助积分说明 766639