Inherently Interpretable Physics-Informed Neural Network for Battery Modeling and Prognosis

电池(电) 人工神经网络 计算机科学 桥(图论) 过程(计算) 编码(集合论) 机器学习 人工智能 数据挖掘 医学 功率(物理) 物理 集合(抽象数据类型) 量子力学 内科学 程序设计语言 操作系统
作者
Fujin Wang,Quanquan Zhi,Zhibin Zhao,Zhi Zhai,Yingkai Liu,Huan Xi,Shibin Wang,Xuefeng Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:16
标识
DOI:10.1109/tnnls.2023.3329368
摘要

Lithium-ion batteries are widely used in modern society. Accurate modeling and prognosis are fundamental to achieving reliable operation of lithium-ion batteries. Accurately predicting the end-of-discharge (EOD) is critical for operations and decision-making when they are deployed to critical missions. Existing data-driven methods have large model parameters, which require a large amount of labeled data and the models are not interpretable. Model-based methods need to know many parameters related to battery design, and the models are difficult to solve. To bridge these gaps, this study proposes a physics-informed neural network (PINN), called battery neural network (BattNN), for battery modeling and prognosis. Specifically, we propose to design the structure of BattNN based on the equivalent circuit model (ECM). Therefore, the entire BattNN is completely constrained by physics. Its forward propagation process follows the physical laws, and the model is inherently interpretable. To validate the proposed method, we conduct the discharge experiments under random loading profiles and develop our dataset. Analysis and experiments show that the proposed BattNN only needs approximately 30 samples for training, and the average required training time is 21.5 s. Experimental results on three datasets show that our method can achieve high prediction accuracy with only a few learnable parameters. Compared with other neural networks, the prediction MAEs of our BattNN are reduced by 77.1%, 67.4%, and 75.0% on three datasets, respectively. Our data and code will be available at: https://github.com/wang-fujin/BattNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adelalady完成签到,获得积分10
刚刚
高圆圆完成签到,获得积分10
1秒前
1秒前
隐形曼青应助轻松的忆雪采纳,获得10
1秒前
喃喃完成签到,获得积分10
2秒前
yinying发布了新的文献求助150
2秒前
Fengjiu完成签到,获得积分10
3秒前
陈鼎都发布了新的文献求助10
3秒前
4秒前
AHa发布了新的文献求助10
4秒前
充电宝应助七仔采纳,获得10
5秒前
文武兼备完成签到,获得积分10
6秒前
滴滴哩哩完成签到,获得积分10
6秒前
赘婿应助小马驹采纳,获得10
7秒前
崔小熊完成签到,获得积分10
7秒前
7秒前
会飞的野马完成签到,获得积分10
7秒前
最好发布了新的文献求助10
7秒前
NexusExplorer应助Mn采纳,获得20
8秒前
万能图书馆应助北珏采纳,获得30
9秒前
kellyzzm发布了新的文献求助10
9秒前
Czerkingsky完成签到,获得积分10
9秒前
威武画板完成签到 ,获得积分10
9秒前
可靠的冰烟完成签到,获得积分10
11秒前
zhutae完成签到,获得积分10
12秒前
12秒前
Yolen LI发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
SciGPT应助简单水蓉采纳,获得10
15秒前
17秒前
17秒前
yinying完成签到,获得积分10
17秒前
小马驹完成签到,获得积分20
17秒前
云雾完成签到 ,获得积分10
17秒前
桐桐应助疾风采纳,获得10
18秒前
玖兰发布了新的文献求助10
18秒前
CodeCraft应助小苹果采纳,获得10
18秒前
英姑应助hurrican采纳,获得10
19秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805375
求助须知:如何正确求助?哪些是违规求助? 3350342
关于积分的说明 10348655
捐赠科研通 3066276
什么是DOI,文献DOI怎么找? 1683655
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243