材料科学
原位
气泡
微波食品加热
热的
复合材料
吸收(声学)
热传导
化学工程
纳米技术
化学
热力学
有机化学
机械
物理
工程类
量子力学
作者
Feifei You,Xinyu Liu,Meiwan Ying,Yijun Yang,Yutong Ke,Yi Shen,Guoxiu Tong,Wenhua Wu
出处
期刊:Materials horizons
[Royal Society of Chemistry]
日期:2023-01-01
卷期号:10 (10): 4609-4625
被引量:26
摘要
Developing multifunctional materials with superior thermal conductivity and microwave absorption is an effective means to address the increasingly serious electromagnetic (EM) compatibility and heat dissipation problems in modern electron devices. Here, multifunctional MgO/Mg(OH)2/C, MgO/M/C (M = Co, Ni, Cu), and MgO/NOx/C (N = Fe, Mn) hybrid foams were synthesized using a facile one-step gas-bubble-assisted combustion method, and their texture, composition, and properties were regulated by tuning salt type and feeding ratio. Our results show that the MgO/Co/C foams have high thermal conductivity (3.40-4.09 W m-1 K-1) with a filler load of 20-50 wt% at the Co2+ molar content of φ = 70 mol% and excellent EM wave absorption (EABW = 11.44 GHz), with a thickness of 2.1 mm and a minimal reflection loss of -59.42 dB at φ = 90 mol%. The enhanced properties are ascribed to the construction of foams with 3D interconnected networks and the synergistic effect of magnetic Co, insulating MgO, and dielectric C, which provide a continuous pathway for electron/phonon relay transmission and magnetic/dielectric dual losses. Moreover, the MgO/Co/C foams possess strong mechanical/hydrophobicity performance, tunable magnetic properties, and electrical conductivity, and can be applied in self-cleaning, electromagnetic interference, and heat management. Overall, this study offers a novel understanding of preparing multifunctional heat conductive-EM wave absorptive foam materials in modern electronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI