Feature Selection for Portable Spectral Sensing Data of Soil Using Broad Learning Network in Fusion With Fuzzy Technique

计算机科学 传感器融合 可扩展性 节点(物理) 遥感 模糊逻辑 数据挖掘 特征(语言学) 人工智能 实时计算 机器学习 数据库 工程类 地理 哲学 结构工程 语言学
作者
Huazhou Chen,Jun Xie,Lili Xu,Quanxi Feng,Qinyong Lin,Ken Cai
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 5644-5653 被引量:11
标识
DOI:10.1109/jsen.2023.3331026
摘要

Urban sensing has become prevalent for monitoring dynamic urban status due to the development of intelligent computing. Fast sensing and accurate analysis of soil quality promote data-driven urban planning and management. Soil contamination hiders the sustainable development of the city's environmental ecology. Decentralized sensing based on an Internet of Things (IoTs) architecture is a state-of-art technology. Portable spectral detection serves for immediate quantitative analysis of target components. In this case, portable sensing combined with federated learning simply shares the informative features extracted from the IoT-based spectral sensing data. However, the modeling technique for the analysis of spectroscopic sensing data faces several challenges due to the emerge of the big data problem in IoT-based sceneries. The consideration of possible federal learning of multinode collective data should ask for deep studies of modeling methodologies. In this article, we built up an IoT-based portable spectral sensing system for simultaneous sensing and detecting soil data at distributed sensing places. The collaborative training model was established for dealing with the dynamic sensing data, by the fusion design of a broad learning network (BLN) and a fuzzy partial least square (fPLS) model. The BLN output feature variables are produced from the scalable pseudo input layer with training linking weights adaptively, and the number of fuzzy rules is scalable. In the experiment, the decentralized sensing system and the fusion modeling framework carry out the model optimization for the portable near-infrared (NIR) spectroscopic sensing data of heavy metals in soil samples. The quantification of two elements demonstrated that the proposed framework yielded superior prediction results to the conventional PLS model for the training and evaluation of the dynamic sensing data. In interaction with the IoT architecture, the framework is prospectively expected as an advanced intelligent technical support for fast analysis of portable spectroscopic sensing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucas应助大福采纳,获得10
2秒前
lynn221204发布了新的文献求助10
4秒前
5秒前
可爱的函函应助李抠抠采纳,获得30
5秒前
6秒前
6秒前
小蘑菇应助果子黄采纳,获得10
7秒前
宋杓完成签到,获得积分10
8秒前
苏源智发布了新的文献求助10
9秒前
fll完成签到,获得积分10
10秒前
13秒前
秀丽嘉熙发布了新的文献求助10
14秒前
19秒前
Jere发布了新的文献求助20
20秒前
阿谈完成签到 ,获得积分10
21秒前
22秒前
zyy144728发布了新的文献求助10
23秒前
asdwind完成签到,获得积分10
23秒前
Hello应助秀丽嘉熙采纳,获得10
24秒前
向日葵发布了新的文献求助10
25秒前
科研通AI6应助丽丽的账号采纳,获得10
25秒前
YifanWang应助一个小胖子采纳,获得10
26秒前
852应助鲤鱼访天采纳,获得30
26秒前
28秒前
29秒前
30秒前
华仔应助皓首穷经采纳,获得10
32秒前
zuo应助向日葵采纳,获得10
33秒前
善学以致用应助苏源智采纳,获得30
33秒前
浮游应助茶米采纳,获得10
35秒前
LLL20240701发布了新的文献求助10
36秒前
SciGPT应助禹宛白采纳,获得10
42秒前
45秒前
liujian发布了新的文献求助10
46秒前
48秒前
天天快乐应助小盆呐采纳,获得10
49秒前
50秒前
YifanWang应助一个小胖子采纳,获得10
51秒前
鲤鱼访天发布了新的文献求助30
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557518
求助须知:如何正确求助?哪些是违规求助? 4642631
关于积分的说明 14668588
捐赠科研通 4584033
什么是DOI,文献DOI怎么找? 2514512
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459482