Artificial Intelligence–Based Modeling Can Predict Face Shape Based on Underlying Craniomaxillofacial Bone

人工智能 工作流程 面子(社会学概念) 方向(向量空间) 计算机视觉 计算机科学 手术计划 模式识别(心理学) 医学 放射科 几何学 社会科学 数学 数据库 社会学
作者
Hanieh Arjmand,Allison Clement,Michael Hardisty,Jeffrey A. Fialkov,Cari Whyne
出处
期刊:Journal of Craniofacial Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:34 (7): 1915-1921 被引量:7
标识
DOI:10.1097/scs.0000000000009597
摘要

Reconstructing facial deformities is often challenging due to the complex 3-dimensional (3D) anatomy of the craniomaxillofacial skeleton and overlying soft tissue structures. Bilateral injuries cannot benefit from mirroring techniques and as such preinjury information (eg, 2D pictures or 3D imaging) may be utilized to determine or estimate the desired 3D face shape. When patient-specific information is not available, other options such as statistical shape models may be employed; however, these models require registration to a consistent orientation which may be challenging. Artificial intelligence (AI) has been used to identify facial features and generate highly realistic simulated faces. As such, it was hypothesized that AI can be used to predict 3D face shape by learning its relationship with the underlying bone surface anatomy in a subject-specific manner. An automated image processing and AI modeling workflow using a modified 3D UNet was generated to estimate 3D face shape using the underlying bone geometry and additional metadata (eg, body mass index and age) obtained from 5 publicly available computed tomography imaging datasets. Visually, the trained models provided a reasonable prediction of the contour and geometry of the facial tissues. The pipeline achieved a validation dice=0.89 when trained on the combined 5 datasets, with the highest dice=0.925 achieved with the single HNSCC dataset. Estimated predefect facial geometry may ultimately be used to aid preoperative craniomaxillofacial surgical planning, providing geometries for intraoperative templates, guides, navigation, molds, and forming tools. Automated face shape prediction may additionally be useful in forensic studies to aid in the identification of unknown skull remains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
天天快乐应助pupu采纳,获得10
2秒前
悟空完成签到,获得积分10
3秒前
4秒前
wanci应助皮代谷采纳,获得10
4秒前
想做只小博狗完成签到,获得积分10
4秒前
在吃饭的时候吃饭完成签到,获得积分10
4秒前
小蘑菇应助77采纳,获得10
5秒前
戚薇发布了新的文献求助10
5秒前
6秒前
超人Steiner完成签到 ,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
迟到虞姬完成签到,获得积分10
9秒前
含糊的小松鼠完成签到,获得积分10
9秒前
10秒前
B站萧亚轩发布了新的文献求助10
10秒前
BowieHuang应助了了采纳,获得10
10秒前
小张医生完成签到,获得积分10
12秒前
Master发布了新的文献求助10
12秒前
发一区完成签到,获得积分10
12秒前
12秒前
饱满一刀完成签到,获得积分10
13秒前
我的小宇宙呢完成签到,获得积分10
13秒前
NexusExplorer应助典雅的依云采纳,获得10
14秒前
早安完成签到 ,获得积分10
14秒前
15秒前
15秒前
不入完成签到,获得积分10
16秒前
bkagyin应助美丽的高跟鞋采纳,获得10
16秒前
戚薇发布了新的文献求助10
17秒前
Lii开心完成签到,获得积分10
18秒前
果汁橡皮糖完成签到,获得积分10
18秒前
小太阳完成签到,获得积分10
19秒前
一条小金鱼儿完成签到,获得积分20
19秒前
linjunqi完成签到,获得积分10
19秒前
20秒前
奋斗访天发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630124
求助须知:如何正确求助?哪些是违规求助? 4721680
关于积分的说明 14972609
捐赠科研通 4788275
什么是DOI,文献DOI怎么找? 2556795
邀请新用户注册赠送积分活动 1517819
关于科研通互助平台的介绍 1478383