Diagnostic Performance of Artificial Intelligence–Based Computer-Aided Detection Software for Automated Breast Ultrasound

计算机辅助设计 医学 接收机工作特性 计算机辅助诊断 乳腺超声检查 乳房成像 置信区间 乳腺癌 放射科 人工智能 乳腺摄影术 癌症 内科学 计算机科学 工程制图 工程类
作者
Mi-ri Kwon,Inyoung Youn,Mi Yeon Lee,Hyunah Lee
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (2): 480-491 被引量:7
标识
DOI:10.1016/j.acra.2023.09.013
摘要

This study aimed to evaluate the diagnostic performance of radiologists following the utilization of artificial intelligence (AI)-based computer-aided detection software (CAD) in detecting suspicious lesions in automated breast ultrasounds (ABUS).ABUS-detected 262 breast lesions (histopathological verification; January 2020 to December 2022) were included. Two radiologists reviewed the images and assigned a Breast Imaging Reporting and Data System (BI-RADS) category. ABUS images were classified as positive or negative using AI-CAD. The BI-RADS category was readjusted in four ways: the radiologists modified the BI-RADS category using the AI results (AI-aided 1), upgraded or downgraded based on AI results (AI-aided 2), only upgraded for positive results (AI-aided 3), or only downgraded for negative results (AI-aided 4). The AI-aided diagnostic performances were compared to radiologists. The AI-CAD-positive and AI-CAD-negative cancer characteristics were compared.For 262 lesions (145 malignant and 117 benign) in 231 women (mean age, 52.2 years), the area under the receiver operator characteristic curve (AUC) of radiologists was 0.870 (95% confidence interval [CI], 0.832-0.908). The AUC significantly improved to 0.919 (95% CI, 0.890-0.947; P = 0.001) using AI-aided 1, whereas it improved without significance to 0.884 (95% CI, 0.844-0.923), 0.890 (95% CI, 0.852-0.929), and 0.890 (95% CI, 0.853-0.928) using AI-aided 2, 3, and 4, respectively. AI-CAD-negative cancers were smaller, less frequently exhibited retraction phenomenon, and had lower BI-RADS category. Among nonmass lesions, AI-CAD-negative cancers showed no posterior shadowing.AI-CAD implementation significantly improved the radiologists' diagnostic performance and may serve as a valuable diagnostic tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼啸37126发布了新的文献求助10
1秒前
小巧强炫发布了新的文献求助10
1秒前
nickion应助曾经不言采纳,获得10
2秒前
min完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助30
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
完美世界应助优美紫槐采纳,获得10
4秒前
篱落完成签到,获得积分10
5秒前
6秒前
fsfs完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
俭朴的雨安完成签到 ,获得积分10
8秒前
10秒前
11秒前
Antonio完成签到,获得积分10
11秒前
zzyt发布了新的文献求助10
11秒前
JamesYang发布了新的文献求助10
11秒前
桐桐应助evelyn采纳,获得10
11秒前
13秒前
死神发布了新的文献求助10
13秒前
13秒前
完美世界应助牧青采纳,获得10
14秒前
坚定的苑睐完成签到 ,获得积分10
14秒前
lizhoukan1完成签到,获得积分10
14秒前
15秒前
Owen应助怕黑的飞柏采纳,获得10
15秒前
小巧强炫完成签到,获得积分10
15秒前
liam发布了新的文献求助10
15秒前
17秒前
19秒前
19秒前
19秒前
虞丹萱完成签到,获得积分10
19秒前
rrrrrrry发布了新的文献求助10
20秒前
FashionBoy应助zzyt采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729406
求助须知:如何正确求助?哪些是违规求助? 5317854
关于积分的说明 15316486
捐赠科研通 4876367
什么是DOI,文献DOI怎么找? 2619340
邀请新用户注册赠送积分活动 1568891
关于科研通互助平台的介绍 1525420