Machine learning approach to gait deviation prediction based on isokinetic data acquired from biometric sensors

步态 随机森林 生物识别 计算机科学 回归 人工智能 步态分析 回归分析 决策树 标准差 机器学习 物理医学与康复 统计 数学 医学
作者
Adam Krechowicz,Stanisław Deniziak,Daniel Kaczmarski
出处
期刊:Gait & Posture [Elsevier BV]
卷期号:101: 55-59
标识
DOI:10.1016/j.gaitpost.2023.01.015
摘要

Analyzing gait deviation is one of the crucial factors during the diagnosis and treatment of children with Cerebral Palsy (CP). The typical diagnostic procedure requires an expensive and complicated three-dimensional gait analysis system based on visual sensors. In this work, we focus on predicting well-known gait pathology scores using only information collected from the BS4P, the affordable isokinetic dynamometer. Using such equipment, it is possible to determine gait pathological indices such as the gait deviation index (GDI) or the Gillette gait index (GGI).Are there correlations between the results of examining patients with CP on the Biodex Pro 4 device and the gait quality metrics (GDI and GGI)?The isokinetic data acquired from biometric sensors (74 records) were analyzed using big data methods. We used several Machine Learning methods to find the correlation between gait deviation and isokinetic data: Adaptive Boosting Regression, K-nearest Neighbor, Decision Tree Regression, Random Forest Regression, and Gradient Boost Regression.In this paper, we provided a detailed comparison of different machine learning regression models in predicting gait quality in patients with CP based only on the data gathered from affordable Biodex 4 Pro device. The best result was obtained using the gradient boosting regression model with Mean Absolute Percentage Error of 6%. However, it was not possible to precisely predict the GGI index using this method.The results obtained showed promising results in the evaluation of gait index scores, which gives the possibility of diagnosing patients with CP without the use of expensive optometric systems. Evaluating gait metrics using the approach proposed in this paper could be very helpful for both physicians and physiotherapists in assessing the condition of patients with CP, as well as other diseases related to gait problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助SZY采纳,获得10
刚刚
cccvingbbb完成签到,获得积分20
1秒前
小龙女发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
4秒前
4秒前
ruan完成签到,获得积分10
5秒前
MDHuang完成签到,获得积分10
5秒前
谨慎寻芹发布了新的文献求助10
7秒前
zhang发布了新的文献求助10
7秒前
7秒前
冯春妮完成签到,获得积分20
7秒前
MMMV发布了新的文献求助10
7秒前
kikokiki发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助150
8秒前
8秒前
8秒前
Kate发布了新的文献求助10
9秒前
和光同尘发布了新的文献求助10
9秒前
典雅雁梅完成签到,获得积分10
9秒前
微眠发布了新的文献求助10
10秒前
12秒前
浮游应助FSY采纳,获得10
12秒前
orixero应助爱听歌沉鱼采纳,获得10
12秒前
张志恒完成签到,获得积分10
12秒前
dan完成签到 ,获得积分10
14秒前
15秒前
15秒前
huanhuan完成签到,获得积分10
15秒前
17秒前
17秒前
17秒前
积极达发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助30
19秒前
ding应助zhang采纳,获得10
19秒前
luu发布了新的文献求助30
19秒前
科研通AI5应助XiYang采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074163
求助须知:如何正确求助?哪些是违规求助? 4294315
关于积分的说明 13380837
捐赠科研通 4115699
什么是DOI,文献DOI怎么找? 2253823
邀请新用户注册赠送积分活动 1258466
关于科研通互助平台的介绍 1191322