Machine learning approach to gait deviation prediction based on isokinetic data acquired from biometric sensors

步态 随机森林 生物识别 计算机科学 回归 人工智能 步态分析 回归分析 决策树 标准差 机器学习 物理医学与康复 统计 数学 医学
作者
Adam Krechowicz,Stanisław Deniziak,Daniel Kaczmarski
出处
期刊:Gait & Posture [Elsevier BV]
卷期号:101: 55-59
标识
DOI:10.1016/j.gaitpost.2023.01.015
摘要

Analyzing gait deviation is one of the crucial factors during the diagnosis and treatment of children with Cerebral Palsy (CP). The typical diagnostic procedure requires an expensive and complicated three-dimensional gait analysis system based on visual sensors. In this work, we focus on predicting well-known gait pathology scores using only information collected from the BS4P, the affordable isokinetic dynamometer. Using such equipment, it is possible to determine gait pathological indices such as the gait deviation index (GDI) or the Gillette gait index (GGI).Are there correlations between the results of examining patients with CP on the Biodex Pro 4 device and the gait quality metrics (GDI and GGI)?The isokinetic data acquired from biometric sensors (74 records) were analyzed using big data methods. We used several Machine Learning methods to find the correlation between gait deviation and isokinetic data: Adaptive Boosting Regression, K-nearest Neighbor, Decision Tree Regression, Random Forest Regression, and Gradient Boost Regression.In this paper, we provided a detailed comparison of different machine learning regression models in predicting gait quality in patients with CP based only on the data gathered from affordable Biodex 4 Pro device. The best result was obtained using the gradient boosting regression model with Mean Absolute Percentage Error of 6%. However, it was not possible to precisely predict the GGI index using this method.The results obtained showed promising results in the evaluation of gait index scores, which gives the possibility of diagnosing patients with CP without the use of expensive optometric systems. Evaluating gait metrics using the approach proposed in this paper could be very helpful for both physicians and physiotherapists in assessing the condition of patients with CP, as well as other diseases related to gait problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傻傻发布了新的文献求助10
刚刚
虚幻初之发布了新的文献求助30
刚刚
刚刚
orixero应助火星上涫采纳,获得10
1秒前
天天快乐应助爱吃肥牛采纳,获得10
1秒前
鹏-zp发布了新的文献求助30
1秒前
2秒前
kaola发布了新的文献求助10
3秒前
复杂冬灵完成签到,获得积分10
3秒前
3秒前
故意的松思应助liu采纳,获得10
4秒前
老实芭蕉应助lizhiqian2024采纳,获得10
4秒前
丘比特应助lizhiqian2024采纳,获得10
4秒前
5秒前
maxu发布了新的文献求助10
6秒前
lmw发布了新的文献求助10
7秒前
卜天亦发布了新的文献求助10
7秒前
情怀应助choi采纳,获得10
8秒前
cangcang完成签到,获得积分10
8秒前
8秒前
Akim应助kaola采纳,获得10
8秒前
9秒前
大白菜小菜农完成签到 ,获得积分10
9秒前
9秒前
王锦完成签到,获得积分10
9秒前
9秒前
10秒前
Owen应助陈chen采纳,获得10
10秒前
RATHER发布了新的文献求助10
10秒前
小蘑菇应助安静玉米采纳,获得10
11秒前
coc完成签到 ,获得积分10
11秒前
12秒前
13秒前
万能图书馆应助贾晓宇采纳,获得10
13秒前
0℃完成签到,获得积分20
14秒前
14秒前
ThomasZ发布了新的文献求助30
14秒前
15秒前
强风吹拂发布了新的文献求助10
15秒前
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790712
求助须知:如何正确求助?哪些是违规求助? 3335592
关于积分的说明 10275421
捐赠科研通 3052056
什么是DOI,文献DOI怎么找? 1674986
邀请新用户注册赠送积分活动 803005
科研通“疑难数据库(出版商)”最低求助积分说明 761007