Adapting to evolving MRI data: A transfer learning approach for Alzheimer’s disease prediction

学习迁移 疾病 人工智能 神经科学 计算机科学 机器学习 数据科学 心理学 医学 内科学
作者
Rosanna Turrisi,Sarthak Pati,Giovanni Pioggia,Gennaro Tartarisco
出处
期刊:NeuroImage [Elsevier]
卷期号:307: 121016-121016 被引量:5
标识
DOI:10.1016/j.neuroimage.2025.121016
摘要

Integrating 3D magnetic resonance imaging (MRI) with machine learning has shown promising results in healthcare, especially in detecting Alzheimer's Disease (AD). However, changes in MRI technologies and acquisition protocols often yield limited data, leading to potential overfitting. This study explores Transfer Learning (TL) approaches to enhance AD diagnosis using a Baseline model consisting of a 3D-Convolutional Neural Network trained on 80 3T MRI scans. Two scenarios are explored: (A) utilizing historical data to address changes in MRI acquisitions (from 1.5T to 3T MRI), and (B) adapting 2D models pre-trained on ImageNet (ResNet18, ResNet50, ResNet101) for 3D image processing when historical data is unavailable. In both scenarios, two modeling approaches are tested. The General Approach involves distinct feature extraction and classification steps, using Radiomic features and TL-based features evaluated with six classifiers. The Deep Approach integrates these steps by fine-tuning the pre-trained models for AD diagnosis. In scenario (A), TL significantly boosts the Baseline's accuracy from 63% to 99%. In scenario (B), Radiomic features better represents 3D MRI than TL-features in the General Approach. Nonetheless, fine-tuning models pre-trained on natural images can increase the Baseline's accuracy by up to 12 percentage points, achieving an overall accuracy of 83%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
宵夜发布了新的文献求助10
2秒前
Orange应助笨笨千秋采纳,获得10
2秒前
和谐孤风发布了新的文献求助10
3秒前
暖暖发布了新的文献求助10
3秒前
3秒前
Chen驳回了pkqaifd应助
3秒前
4秒前
lalala发布了新的文献求助10
5秒前
浮游应助kx采纳,获得10
5秒前
5秒前
5秒前
yule完成签到,获得积分10
5秒前
打老虎完成签到,获得积分10
7秒前
三三完成签到,获得积分10
7秒前
丘比特应助无辜访彤采纳,获得10
7秒前
开心网络发布了新的文献求助20
7秒前
琥珀完成签到,获得积分20
7秒前
栗子栗栗子完成签到,获得积分10
9秒前
独特觅翠举报肥仔求助涉嫌违规
10秒前
10秒前
CHEN发布了新的文献求助10
11秒前
栗子完成签到,获得积分10
12秒前
12秒前
琥珀发布了新的文献求助10
12秒前
14秒前
watermelon完成签到,获得积分10
14秒前
lalala完成签到,获得积分10
15秒前
15秒前
韵苑发布了新的文献求助10
15秒前
Oracle发布了新的文献求助10
18秒前
18秒前
Tonsil01发布了新的文献求助10
20秒前
宵夜完成签到,获得积分20
20秒前
韩野完成签到,获得积分10
20秒前
21秒前
李爱国应助niobium采纳,获得200
22秒前
22秒前
Ava应助歼击机88采纳,获得10
23秒前
无辜访彤发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298978
求助须知:如何正确求助?哪些是违规求助? 4447324
关于积分的说明 13842385
捐赠科研通 4332903
什么是DOI,文献DOI怎么找? 2378395
邀请新用户注册赠送积分活动 1373694
关于科研通互助平台的介绍 1339263