Data and model synergy-driven rolling bearings remaining useful life prediction approach based on deep neural network and Wiener process

人工神经网络 过程(计算) 计算机科学 人工智能 深层神经网络 工程类 机器学习 操作系统
作者
Yonghuai Zhu,Xiaoya Zhou,Jiangfeng Cheng,Zhifeng Liu,Xiaofu Zou,Qiang Cheng,Hui Xu,Yong Wang,Fei Tao
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASM International]
卷期号:147 (4)
标识
DOI:10.1115/1.4067092
摘要

Abstract Various remaining useful life (RUL) prediction methods, encompassing model-based, data-driven, and hybrid methods, have been developed and successfully applied to prognostics and health management for diverse rolling bearing. Hybrid methods that integrate the merits of model-based and data-driven methods have garnered significant attention. However, the effective integration of the two methods to address the randomness in rolling bearing full life cycle processes remains a significant challenge. To overcome the challenge, this paper proposes a data and model synergy-driven RUL prediction framework that includes two data and model synergy strategies. First, a convolutional stacked bidirectional long short-term memory network with temporal attention mechanism is established to construct Health Index (HI). The RUL prediction is achieved based on HI and polynomial model. Second, a three-phase degradation model based on the Wiener process is developed by considering the evolutionary pattern of different degradation phases. Then, two synergy strategies are designed. Strategy 1: HI is adopted as the observation value for online updating of physics degradation model parameters under Bayesian framework, and the RUL prediction results are obtained from the physics degradation model. Strategy 2: The RUL prediction results from the data-driven and physics-based model are weighted linearly combined to improve the overall prediction accuracy. The effectiveness of the proposed model is verified using two bearing full life cycle datasets. The results indicate that the proposed approach can accommodate both short-term and long-term RUL predictions, outperforming state-of-the-art single models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观小之应助Yang采纳,获得10
1秒前
1秒前
2秒前
研友_851KE8发布了新的文献求助10
2秒前
3秒前
舒适的树莓应助shinble采纳,获得30
4秒前
Jimmy_King完成签到,获得积分10
4秒前
adydcm完成签到 ,获得积分10
5秒前
武丝丝完成签到,获得积分10
6秒前
情怀应助追光采纳,获得10
7秒前
爆米花应助张云志采纳,获得10
9秒前
growl发布了新的文献求助10
11秒前
111发布了新的文献求助10
13秒前
14秒前
yyfdqms完成签到,获得积分10
15秒前
19秒前
今后应助杨杨杨采纳,获得10
19秒前
19秒前
22秒前
追光发布了新的文献求助10
23秒前
慕青应助热爱科研的刘采纳,获得10
24秒前
25秒前
斯文败类应助武丝丝采纳,获得10
25秒前
27秒前
27秒前
书中月发布了新的文献求助30
28秒前
李爱国应助虚幻诗柳采纳,获得10
28秒前
隐形曼青应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
大模型应助科研通管家采纳,获得10
30秒前
在水一方应助科研通管家采纳,获得10
30秒前
华仔应助科研通管家采纳,获得10
30秒前
CipherSage应助科研通管家采纳,获得10
30秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
小二郎应助科研通管家采纳,获得10
30秒前
30秒前
乐观小之应助心心采纳,获得10
30秒前
我要发sci发布了新的文献求助10
30秒前
科目三应助山东及时雨采纳,获得10
31秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Potential of Plant–Plant Communication to Improve Sustainable Pest Control 200
Gothic forms of feminine fictions 200
Solving Nonlinear Equations with Newton's Method 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836465
求助须知:如何正确求助?哪些是违规求助? 3378770
关于积分的说明 10505887
捐赠科研通 3098396
什么是DOI,文献DOI怎么找? 1706483
邀请新用户注册赠送积分活动 821062
科研通“疑难数据库(出版商)”最低求助积分说明 772431