Data and model synergy-driven rolling bearings remaining useful life prediction approach based on deep neural network and Wiener process

人工神经网络 过程(计算) 计算机科学 人工智能 深层神经网络 工程类 机器学习 操作系统
作者
Yonghuai Zhu,Xiaoya Zhou,Jiangfeng Cheng,Zhifeng Liu,Xiaofu Zou,Qiang Cheng,Hui Xu,Yong Wang,Fei Tao
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASM International]
卷期号:147 (4)
标识
DOI:10.1115/1.4067092
摘要

Abstract Various remaining useful life (RUL) prediction methods, encompassing model-based, data-driven, and hybrid methods, have been developed and successfully applied to prognostics and health management for diverse rolling bearing. Hybrid methods that integrate the merits of model-based and data-driven methods have garnered significant attention. However, the effective integration of the two methods to address the randomness in rolling bearing full life cycle processes remains a significant challenge. To overcome the challenge, this paper proposes a data and model synergy-driven RUL prediction framework that includes two data and model synergy strategies. First, a convolutional stacked bidirectional long short-term memory network with temporal attention mechanism is established to construct Health Index (HI). The RUL prediction is achieved based on HI and polynomial model. Second, a three-phase degradation model based on the Wiener process is developed by considering the evolutionary pattern of different degradation phases. Then, two synergy strategies are designed. Strategy 1: HI is adopted as the observation value for online updating of physics degradation model parameters under Bayesian framework, and the RUL prediction results are obtained from the physics degradation model. Strategy 2: The RUL prediction results from the data-driven and physics-based model are weighted linearly combined to improve the overall prediction accuracy. The effectiveness of the proposed model is verified using two bearing full life cycle datasets. The results indicate that the proposed approach can accommodate both short-term and long-term RUL predictions, outperforming state-of-the-art single models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
天真的夜山完成签到,获得积分10
3秒前
4秒前
舒适香露发布了新的文献求助10
5秒前
5秒前
夏天呀发布了新的文献求助10
6秒前
酷波er应助jing静采纳,获得10
7秒前
橙子发布了新的文献求助10
9秒前
13击发布了新的文献求助30
10秒前
10秒前
aaa发布了新的文献求助10
11秒前
limumu完成签到,获得积分20
11秒前
852应助夏定海采纳,获得10
13秒前
走之由关注了科研通微信公众号
13秒前
14秒前
木野狐发布了新的文献求助10
17秒前
无花果应助叶叶叶采纳,获得10
17秒前
18秒前
外向的盼烟完成签到,获得积分10
20秒前
21秒前
22秒前
24秒前
summer 3575发布了新的文献求助10
24秒前
夏定海发布了新的文献求助10
25秒前
木野狐完成签到,获得积分10
26秒前
HIKUN发布了新的文献求助10
26秒前
叶叶叶发布了新的文献求助10
29秒前
华仔应助李哈哈采纳,获得10
29秒前
深情安青应助我太难了采纳,获得10
29秒前
量子星尘发布了新的文献求助10
30秒前
爱的魔力转圈圈完成签到,获得积分10
35秒前
科研通AI5应助刘家小姐姐采纳,获得10
36秒前
Paperduoduo完成签到,获得积分10
36秒前
xcxcxcily完成签到,获得积分10
37秒前
39秒前
39秒前
李哈哈发布了新的文献求助10
42秒前
42秒前
43秒前
zero桥发布了新的文献求助30
43秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4321368
求助须知:如何正确求助?哪些是违规求助? 3837896
关于积分的说明 11999138
捐赠科研通 3478280
什么是DOI,文献DOI怎么找? 1907995
邀请新用户注册赠送积分活动 953485
科研通“疑难数据库(出版商)”最低求助积分说明 854823