A Multidimensional Regression Model for Predicting Recurrence in Chronic Low Back Pain

逻辑回归 医学 接收机工作特性 队列 曲线下面积 多元统计 内科学 Oswestry残疾指数 前瞻性队列研究 物理疗法 腰痛 机器学习 病理 计算机科学 替代医学
作者
Yilong Huang,Chunli Li,Jiaxin Chen,Zhongwei Wang,Derong Zhao,Yang Lei,Zhenguang Zhang,Yuanming Jiang,Xiaolina Zhang,Bo He,Zaiyi Liu
出处
期刊:European Journal of Pain [Wiley]
卷期号:29 (3)
标识
DOI:10.1002/ejp.4793
摘要

ABSTRACT Background Recurrence is common in chronic low back pain (CLBP). However, predicting the recurrence risk remains a challenge. The aim is to develop and validate a machine learning tool to predict the recurrence risk in patients with CLBP by using multidimensional medical information. Methods This prospective cohort study consecutively enrolled 341 patients with CLBP from two hospitals between 1 January 2021 and 31 December 2021. Patients from both centres were used for model development and internal validation, employing multivariate logistic regression (MRL) along with three additional machine learning algorithms. The multidimensional model (MDM) was used to predict recurrence in the next 2 years and was compared with the widely used prognostic tool, the STarT BACK Tool (SBT). The models' performance in detecting recurrence was evaluated using several metrics, including the area under the receiver operating characteristic curve (AUC), decision curve analysis, accuracy, sensitivity and specificity. Results A total of 131 patients (38.42%) experienced recurrence. In the MRL model, factors linked to recurrence odds included progressive lower limb weakness, anxiety, mechanical pressure test, number of previous episodes, Oswestry disability index and multifidus proton density fat fraction. For recurrence prediction, the MRL‐MDM achieved an AUC of 0.813 (95% CI, 0.765–0.862), sensitivity of 85.2% and specificity of 70.2% in internal validation. In comparison, the SBT for recurrence had an AUC of 0.555 (95% CI, 0.518–0.592), sensitivity of 93.3% and specificity of 17.6%. Conclusion The MDM may predict recurrence in patients with CLBP over a 2‐year period, surpassing the performance of SBT. Significance Statement This study found that the STarT BACK tool is suboptimal in predicting the 2‐year recurrence of chronic low back pain (CLBP). Our proposed multidimensional machine learning model aids clinicians in identifying patients at high risk for future recurrence of CLBP and in implementing appropriate preventive measures. Given the considerable healthcare resource utilisation associated with the frequent recurrence of CLBP, our novel model provides significant assistance in addressing this issue, demonstrating substantial clinical relevance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夏铖铄发布了新的文献求助10
刚刚
蔡余文关注了科研通微信公众号
刚刚
1秒前
1秒前
1秒前
独特的尔风完成签到,获得积分10
2秒前
2秒前
CAT完成签到,获得积分10
2秒前
下周五完成签到,获得积分10
3秒前
3秒前
小七发布了新的文献求助10
3秒前
柏林发布了新的文献求助10
4秒前
4秒前
brodie完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
酷波er应助DADA采纳,获得10
5秒前
6秒前
anyone发布了新的文献求助30
6秒前
你爸爸完成签到,获得积分10
6秒前
CodeCraft应助LEETHEO采纳,获得10
6秒前
Ulysses完成签到,获得积分10
6秒前
6秒前
付创发布了新的文献求助10
7秒前
7秒前
lzh发布了新的文献求助10
7秒前
llltencion发布了新的文献求助10
8秒前
路痴发布了新的文献求助10
8秒前
飞飞发布了新的文献求助10
8秒前
8秒前
10秒前
想飞的猪发布了新的文献求助10
10秒前
10秒前
F503完成签到,获得积分10
10秒前
liyuqi61148完成签到,获得积分10
10秒前
111发布了新的文献求助10
12秒前
123发布了新的文献求助10
12秒前
落后的嚓茶完成签到,获得积分10
12秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872505
求助须知:如何正确求助?哪些是违规求助? 3414886
关于积分的说明 10691398
捐赠科研通 3139120
什么是DOI,文献DOI怎么找? 1731970
邀请新用户注册赠送积分活动 835182
科研通“疑难数据库(出版商)”最低求助积分说明 781715