亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning and computer vision in plant disease detection: a comprehensive review of techniques, models, and trends in precision agriculture

计算机科学 人工智能 深度学习 精准农业 机器学习 卷积神经网络 植物病害 多光谱图像 鉴定(生物学) 农业 数据科学 生物技术 生态学 植物 生物
作者
Abhishek Upadhyay,Narendra Singh Chandel,Krishna Pratap Singh,Subir Kumar Chakraborty,B. M. Nandede,Mohit Kumar,A. Subeesh,Konga Upendar,Ali Salem,Ahmed Elbeltagi
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:58 (3) 被引量:108
标识
DOI:10.1007/s10462-024-11100-x
摘要

Abstract Plant diseases cause significant damage to agriculture, leading to substantial yield losses and posing a major threat to food security. Detection, identification, quantification, and diagnosis of plant diseases are crucial parts of precision agriculture and crop protection. Modernizing agriculture and improving production efficiency are significantly affected by using computer vision technology for crop disease diagnosis. This technology is notable for its non-destructive nature, speed, real-time responsiveness, and precision. Deep learning (DL), a recent breakthrough in computer vision, has become a focal point in agricultural plant protection that can minimize the biases of manually selecting disease spot features. This study reviews the techniques and tools used for automatic disease identification, state-of-the-art DL models, and recent trends in DL-based image analysis. The techniques, performance, benefits, drawbacks, underlying frameworks, and reference datasets of more than 278 research articles were analyzed and subsequently highlighted in accordance with the architecture of computer vision and deep learning models. Key findings include the effectiveness of imaging techniques and sensors like RGB, multispectral, and hyperspectral cameras for early disease detection. Researchers also evaluated various DL architectures, such as convolutional neural networks, vision transformers, generative adversarial networks, vision language models, and foundation models. Moreover, the study connects academic research with practical agricultural applications, providing guidance on the suitability of these models for production environments. This comprehensive review offers valuable insights into the current state and future directions of deep learning in plant disease detection, making it a significant resource for researchers, academicians, and practitioners in precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄老牛完成签到 ,获得积分10
15秒前
无极微光应助Zyy采纳,获得20
20秒前
大模型应助科研通管家采纳,获得10
48秒前
英俊的铭应助科研通管家采纳,获得10
48秒前
ceeray23应助科研通管家采纳,获得10
48秒前
科研通AI6应助科研通管家采纳,获得10
48秒前
wanci应助科研通管家采纳,获得10
48秒前
余念安完成签到 ,获得积分10
50秒前
9999发布了新的文献求助10
54秒前
sea完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
明芬发布了新的文献求助10
1分钟前
hx完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
明芬发布了新的文献求助10
2分钟前
臭小子发布了新的文献求助10
2分钟前
臭小子完成签到,获得积分10
2分钟前
blenx完成签到,获得积分10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
我是老大应助科研通管家采纳,获得50
2分钟前
TYM发布了新的文献求助30
2分钟前
3分钟前
迷路千琴完成签到,获得积分10
4分钟前
Eeeeven完成签到 ,获得积分10
4分钟前
4分钟前
ceeray23应助科研通管家采纳,获得200
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
追梦远行人完成签到 ,获得积分10
5分钟前
Jay发布了新的文献求助30
5分钟前
TYM发布了新的文献求助10
5分钟前
Jay关闭了Jay文献求助
5分钟前
星辰大海应助TYM采纳,获得10
5分钟前
6分钟前
深情安青应助科研通管家采纳,获得10
6分钟前
科研通AI6应助明芬采纳,获得10
6分钟前
星辰大海应助谭代涛采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599798
求助须知:如何正确求助?哪些是违规求助? 4685540
关于积分的说明 14838598
捐赠科研通 4671325
什么是DOI,文献DOI怎么找? 2538288
邀请新用户注册赠送积分活动 1505547
关于科研通互助平台的介绍 1470945