Application of Modern Artificial Intelligence Techniques in the Development of Organic Molecular Force Fields

纳米技术 生化工程 人工智能 材料科学 计算机科学 工程类
作者
Junmin Chen,Qian Gao,Miaofei Huang,Kuang Yu
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
被引量:2
标识
DOI:10.1039/d4cp02989e
摘要

The molecular force field (FF) determines the accuracy of molecular dynamics (MD) and is one of the major bottlenecks that limits the application of MD in molecular design. Recently, artificial intelligence (AI) techniques, such as machine-learning potentials (MLPs), have been rapidly reshaping the landscape of MD. Meanwhile, organic molecular systems feature unique characteristics, and require more careful treatment in both model construction, optimization, and validation. While an accurate and generic organic molecular force field is still missing, significant progress has been made with the facilitation of AI, warranting a promising future. In this review, we provide an overview of the various types of AI techniques used in molecular FF development and discuss both the advantages and weaknesses of these methodologies. We show how AI methods provide unprecedented capabilities in many tasks such as potential fitting, atom typification, and automatic optimization. Meanwhile, it is also worth noting that more efforts are needed to improve the transferability of the model, develop a more comprehensive database, and establish more standardized validation procedures. With these discussions, we hope to inspire more efforts to solve the existing problems, eventually leading to the birth of next-generation generic organic FFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Bellona发布了新的文献求助10
1秒前
wed发布了新的文献求助10
1秒前
王政完成签到,获得积分10
1秒前
彭于晏应助刻苦的如霜采纳,获得10
1秒前
1秒前
小金鱼完成签到,获得积分10
2秒前
kavins凯旋发布了新的文献求助10
2秒前
北落发布了新的文献求助10
2秒前
2秒前
2秒前
大模型应助失眠成协采纳,获得10
2秒前
CipherSage应助胖子采纳,获得10
3秒前
3秒前
怡然安南完成签到 ,获得积分10
4秒前
顾顾发布了新的文献求助10
4秒前
4秒前
sxypdbh完成签到,获得积分10
4秒前
5秒前
背后的飞阳关注了科研通微信公众号
5秒前
打打应助成就忻采纳,获得10
6秒前
赫连涵柏发布了新的文献求助10
6秒前
CipherSage应助斯人如机采纳,获得10
6秒前
领导范儿应助wuxunxun2015采纳,获得10
7秒前
毕襄完成签到,获得积分20
7秒前
科目三应助yuyyy采纳,获得10
7秒前
kavins凯旋完成签到,获得积分10
8秒前
8秒前
8秒前
微笑越泽发布了新的文献求助10
8秒前
彭于晏应助aimer采纳,获得10
9秒前
怕黑嘉懿发布了新的文献求助60
9秒前
9秒前
22完成签到,获得积分10
9秒前
暴走完成签到 ,获得积分10
9秒前
2079571949完成签到,获得积分10
9秒前
賴桑发布了新的文献求助10
9秒前
yijiao发布了新的文献求助10
9秒前
10秒前
kkkkk完成签到,获得积分10
11秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204858
求助须知:如何正确求助?哪些是违规求助? 4383758
关于积分的说明 13650861
捐赠科研通 4241754
什么是DOI,文献DOI怎么找? 2327024
邀请新用户注册赠送积分活动 1324769
关于科研通互助平台的介绍 1276983