Application of Modern Artificial Intelligence Techniques in the Development of Organic Molecular Force Fields

纳米技术 生化工程 人工智能 材料科学 计算机科学 工程类
作者
Junmin Chen,Qian Gao,Miaofei Huang,Kuang Yu
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
被引量:2
标识
DOI:10.1039/d4cp02989e
摘要

The molecular force field (FF) determines the accuracy of molecular dynamics (MD) and is one of the major bottlenecks that limits the application of MD in molecular design. Recently, artificial intelligence (AI) techniques, such as machine-learning potentials (MLPs), have been rapidly reshaping the landscape of MD. Meanwhile, organic molecular systems feature unique characteristics, and require more careful treatment in both model construction, optimization, and validation. While an accurate and generic organic molecular force field is still missing, significant progress has been made with the facilitation of AI, warranting a promising future. In this review, we provide an overview of the various types of AI techniques used in molecular FF development and discuss both the advantages and weaknesses of these methodologies. We show how AI methods provide unprecedented capabilities in many tasks such as potential fitting, atom typification, and automatic optimization. Meanwhile, it is also worth noting that more efforts are needed to improve the transferability of the model, develop a more comprehensive database, and establish more standardized validation procedures. With these discussions, we hope to inspire more efforts to solve the existing problems, eventually leading to the birth of next-generation generic organic FFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助精明的访蕊采纳,获得10
刚刚
polaris发布了新的文献求助30
1秒前
石珊的豆豆完成签到,获得积分10
1秒前
wjwqz完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
我是老大应助MercuryLee采纳,获得10
4秒前
4秒前
5秒前
wjwqz发布了新的文献求助10
5秒前
田様应助哈哈采纳,获得10
5秒前
桐桐应助Gj采纳,获得10
5秒前
6秒前
6秒前
梁亚琦完成签到 ,获得积分10
6秒前
lxy发布了新的文献求助10
7秒前
7秒前
7秒前
含蓄访梦完成签到,获得积分10
8秒前
邓嘉惠完成签到,获得积分10
8秒前
李健的小迷弟应助Sun采纳,获得10
9秒前
王阳涛完成签到,获得积分20
10秒前
靓仔发布了新的文献求助10
10秒前
11秒前
含蓄访梦发布了新的文献求助10
11秒前
11秒前
cdsd发布了新的文献求助10
12秒前
小马甲应助tang采纳,获得10
13秒前
传奇3应助小天才采纳,获得10
13秒前
111发布了新的文献求助10
13秒前
爱听歌老1发布了新的文献求助10
14秒前
15秒前
whandzxl发布了新的文献求助10
16秒前
lxy完成签到,获得积分10
16秒前
17秒前
简简单单完成签到,获得积分10
17秒前
18秒前
muzi发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4511548
求助须知:如何正确求助?哪些是违规求助? 3957169
关于积分的说明 12267819
捐赠科研通 3618331
什么是DOI,文献DOI怎么找? 1991029
邀请新用户注册赠送积分活动 1027330
科研通“疑难数据库(出版商)”最低求助积分说明 918629