Tooth Instance Segmentation and Disease Detection With Uncertainty-Aware Contrastive Learning and Cross-Scale Attention

分割 计算机科学 人工智能 水准点(测量) 图像分割 边界(拓扑) 保险丝(电气) 模式识别(心理学) 机器学习 比例(比率) 数学 地理 数学分析 物理 大地测量学 工程类 量子力学 电气工程
作者
Xu Xu,Junxin Chen,J. J. Yin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/jbhi.2024.3525460
摘要

Recent years have witnessed the increasing applications of artificial intelligence for tooth treatment, among which tooth instance segmentation and disease detection are two important research directions. Advanced algorithms have been proposed, however, two challenging issues remain unsolved, i.e., unclear prediction boundaries for adjacent teeth, and high parameters of the model. To this end, our work proposes a lightweight framework, namely UCL-Net, for efficient tooth instance segmentation and disease detection. Specifically, uncertainty-aware contrastive learning is first employed for tooth segmentation. It is based on a multivariate Gaussian distribution to model the boundary pixel and is able to highlight inter-class differences, thereby refining the segmentation boundary. In addition, a lightweight segmentation model which has only 34.9 M parameters is further developed. Benefiting from the cross-scale attention, it is able to efficiently fuse different scale features, and therefore yields accurate tooth disease detection with a lightweight load. Four benchmark datasets are employed for performance validation. Both the qualitative and quantitative results demonstrate that the proposed UCL-Net is lightweight, effective, and advantageous over peer state-of-the-art (SOTA) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助叉叉茶采纳,获得10
1秒前
1秒前
逆天大脚完成签到,获得积分10
2秒前
2秒前
2秒前
慕青应助柯续缘采纳,获得10
3秒前
3秒前
mxy完成签到,获得积分10
4秒前
亭子发布了新的文献求助10
5秒前
5秒前
5秒前
Bailan完成签到,获得积分10
5秒前
小刘发布了新的文献求助10
6秒前
6秒前
蝃蝀完成签到,获得积分10
6秒前
lily发布了新的文献求助10
7秒前
2336783477发布了新的文献求助10
7秒前
8秒前
兰彻发布了新的文献求助10
8秒前
Avisit完成签到,获得积分10
8秒前
nemo发布了新的文献求助10
9秒前
9秒前
9秒前
彭于晏应助勤恳的元绿采纳,获得10
9秒前
fanfan发布了新的文献求助10
9秒前
10秒前
DX发布了新的文献求助20
10秒前
chrislignin完成签到,获得积分10
10秒前
Cetus完成签到,获得积分20
10秒前
11秒前
浪里白条发布了新的文献求助10
12秒前
12秒前
张二狗完成签到,获得积分10
13秒前
13秒前
我是老大应助yq采纳,获得10
14秒前
yuzhanli发布了新的文献求助10
14秒前
Zj发布了新的文献求助10
14秒前
14秒前
1111完成签到,获得积分10
14秒前
liuhongcan发布了新的文献求助10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Experimental Design for the Life Sciences 200
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835852
求助须知:如何正确求助?哪些是违规求助? 3378260
关于积分的说明 10503027
捐赠科研通 3097775
什么是DOI,文献DOI怎么找? 1706063
邀请新用户注册赠送积分活动 820776
科研通“疑难数据库(出版商)”最低求助积分说明 772292