Thermal Conductivity Modeling for Liquid-Phase-Sintered Silicon Carbide Ceramics Using Machine Learning Computational Methods

碳化硅 陶瓷 材料科学 热导率 液相 相(物质) 复合材料 碳化物 热力学 化学 物理 有机化学
作者
Sami M. Ibn Shamsah
出处
期刊:Crystals [Multidisciplinary Digital Publishing Institute]
卷期号:15 (2): 197-197
标识
DOI:10.3390/cryst15020197
摘要

Silicon carbide is a covalently bonded engineering material and structural ceramic with excellent mechanical properties, high resistance to oxidation, corrosion, and wear, and tunable thermal conductivity. The exceptional thermal conductivity of silicon carbide ceramic promotes its candidature in many industrial applications, such as nuclear fuel capsule materials, substrate materials employed in semiconductor devices, heater plates, and heaters for processing semiconductor and gas seal rings employed in compressor pumps, among others. The synthesis of polycrystalline silicon carbide through the liquid-phase sintering approach results in lower thermal conductivity due to the presence of structural defects associated with grains, lattice impurities, grains’ random orientations, and the presence of secondary phases in polycrystalline silicon carbide ceramic. The conventional experimental method of enhancing thermal conductivity is laborious and expensive. This present work modeled the thermal conductivity of liquid-phase silicon carbide ceramic via intelligent approaches involving genetic algorithm-optimized support vector regression (SVR-GA), an extreme learning machine with a sine activation function (ELMS), and random forest regression (RFR). The descriptors for the models included the nature of sintering additives as well as their weights, sintering conditions, applied pressure, sintering temperature, and time. Using the mean absolute error (MAE) and root mean square error (RMSE) for performance assessment, it was observed that the ELMS outperformed the RFR and SVR-GA models with improvements of 40.50% and 25.76%, respectively, using the MAE metric and improvements of 16.57% and 24.43%, respectively, using the RMSE metric. The developed models were further used to investigate the effect of the weight of sintering additives and sintering time on the thermal conductivity of silicon carbide ceramic. The precision of the developed models facilitated a comprehensive investigation of the effect of sintering factors on thermal conductivity while hidden connections that exist between the factors are uncovered for enhancing application domains for silicon carbide ceramics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潘fujun完成签到 ,获得积分10
3秒前
Wang发布了新的文献求助10
5秒前
HCKACECE完成签到 ,获得积分0
5秒前
赧赧完成签到 ,获得积分10
12秒前
goodsheep完成签到 ,获得积分10
16秒前
哈哈哈完成签到 ,获得积分10
18秒前
你会飞么发布了新的文献求助10
20秒前
落红禹03完成签到 ,获得积分10
21秒前
30秒前
liang19640908完成签到 ,获得积分10
30秒前
你会飞么完成签到,获得积分10
30秒前
淡然的咖啡豆完成签到 ,获得积分10
36秒前
123完成签到 ,获得积分10
37秒前
Ingrid_26完成签到,获得积分10
43秒前
xiaoliuyaonuli完成签到,获得积分10
43秒前
西红柿不吃皮完成签到 ,获得积分10
49秒前
鲲之小完成签到 ,获得积分10
50秒前
Zheng完成签到 ,获得积分10
53秒前
甜蜜代双完成签到 ,获得积分10
55秒前
文静的惜雪完成签到 ,获得积分10
56秒前
chen完成签到 ,获得积分10
56秒前
swordshine完成签到,获得积分10
56秒前
sjyu1985完成签到 ,获得积分10
59秒前
xue112完成签到 ,获得积分10
1分钟前
大雄的梦想是什么完成签到 ,获得积分10
1分钟前
CipherSage应助hhh2018687采纳,获得30
1分钟前
hxpxp完成签到,获得积分10
1分钟前
yilin完成签到 ,获得积分10
1分钟前
海猫食堂完成签到,获得积分10
1分钟前
Raymond完成签到,获得积分10
1分钟前
Jackson333完成签到,获得积分10
1分钟前
xiaobin完成签到,获得积分10
1分钟前
1分钟前
胡楠完成签到,获得积分10
1分钟前
1分钟前
hhh2018687发布了新的文献求助30
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402437
捐赠科研通 3077226
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743