Predicting the Reparability of Rotator Cuff Tears: Machine Learning and Comparison With Previous Scoring Systems

肩袖 接收机工作特性 医学 逻辑回归 计分系统 眼泪 机器学习 试验装置 人工智能 集合(抽象数据类型) 计算机科学 外科 程序设计语言
作者
Woo Jung Sung,Seung-Hwan Shin,Joon‐Ryul Lim,Tae‐Hwan Yoon,Yong‐Min Chun
出处
期刊:American Journal of Sports Medicine [SAGE Publishing]
卷期号:52 (14): 3512-3519
标识
DOI:10.1177/03635465241287527
摘要

Background: Repair of rotator cuff tear is not always feasible, depending on the severity. Although several studies have investigated factors related to reparability and various methods to predict it, inconsistent scoring methods and a lack of validation have hindered the utility of these methods. Purpose: To develop machine learning models to predict the reparability of rotator cuff tears, compare them with previous scoring systems, and provide an accessible online model. Study Design: Cohort study; Level of evidence, 3. Methods: Arthroscopic rotator cuff repairs for tears with both anteroposterior and mediolateral diameters >1 cm on preoperative magnetic resonance imaging were included and divided into a training set (70%) and an internal validation set (30%). For external validation, rotator cuff repairs performed by 2 different surgeons were included in a test set. Machine learning models and a newly adjusted scoring system were developed using the training set. The performance of the models including the adjusted scoring system and 2 previous scoring systems were compared using the test set. The performance was assessed using metrics such as the area under the receiver operating characteristic curve (AUROC) and compared using the net reclassification improvement based on the adjusted scoring system. Results: A total of 429 patients were included for the training and internal validation set, and 112 patients were included for the test set. An elastic-net logistic regression demonstrated the best performance, with an AUROC of 0.847 and net reclassification improvement of 0.071, compared with the adjusted scoring system in the test set. The AUROC of the adjusted scoring system was 0.786, and the AUROCs of the previous scoring systems were 0.757 and 0.687. The elastic-net logistic regression was transformed into an accessible online model. Conclusion: The performance of the machine learning model, which provides a probability estimation for rotator cuff reparability, is comparable with that of the adjusted scoring system. Nevertheless, when deploying prediction models beyond the original cohort, regardless of whether they rely on machine learning or scoring systems, clinicians should exercise caution and not rely solely on the output of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海人完成签到,获得积分10
1秒前
我是老大应助cure采纳,获得10
1秒前
小马想毕业完成签到,获得积分10
2秒前
今后应助谁家那小谁采纳,获得10
3秒前
ytsa完成签到,获得积分10
4秒前
海人发布了新的文献求助10
5秒前
13秒前
手握灵珠常奋笔完成签到,获得积分10
14秒前
余味应助WFLLL采纳,获得10
18秒前
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
TUTU应助科研通管家采纳,获得10
19秒前
19秒前
田様应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
bc应助懵懂的小夏采纳,获得20
22秒前
兜兜揣满糖完成签到 ,获得积分10
23秒前
天真琳发布了新的文献求助10
24秒前
如你所liao完成签到,获得积分10
25秒前
小白应助吴开心采纳,获得10
25秒前
26秒前
22完成签到 ,获得积分10
26秒前
Herbs完成签到 ,获得积分10
28秒前
28秒前
开心蛋挞完成签到 ,获得积分10
31秒前
雷雷完成签到,获得积分10
31秒前
33秒前
dochx发布了新的文献求助10
35秒前
cdercder应助Be-a rogue采纳,获得10
36秒前
Hey完成签到 ,获得积分10
37秒前
chenfeng2163发布了新的文献求助10
37秒前
明亮的代灵完成签到 ,获得积分10
40秒前
嘻嘻完成签到 ,获得积分10
41秒前
丰富的大地完成签到,获得积分10
43秒前
chenfeng2163完成签到,获得积分10
44秒前
dochx完成签到,获得积分10
48秒前
科研小南完成签到 ,获得积分10
50秒前
归尘应助安详的惜梦采纳,获得10
51秒前
koutianle完成签到 ,获得积分10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777749
求助须知:如何正确求助?哪些是违规求助? 3323242
关于积分的说明 10213223
捐赠科研通 3038523
什么是DOI,文献DOI怎么找? 1667522
邀请新用户注册赠送积分活动 798139
科研通“疑难数据库(出版商)”最低求助积分说明 758275