Leveraging on large language model to classify sentences: a case study applying STAGES scoring methodology for sentence completion test on ego development

句子完成测试 心理学 自然语言处理 考试(生物学) 判决 人工智能 本我、自我与超我 洛文格的自我发展阶段 语言学 计算机科学 社会心理学 生物 哲学 古生物学
作者
Xavier Bronlet
出处
期刊:Frontiers in Psychology [Frontiers Media]
卷期号:16
标识
DOI:10.3389/fpsyg.2025.1488102
摘要

The emergence of artificial intelligence and the widespread availability of large language model open the door to text analysis at scale leveraging on complex classification instructions. This case study explores the possibility of using available large language models to measure ego development at scale and establish a methodology that can be applied to other classification instructions. Ego consists of the traits that influence how a person perceives and engages with the world, while ego development is a crucial aspect of adult personality growth, influencing behaviors and decisions in both personal and professional contexts. Accurate assessments of ego development stages are vital for creating effective strategies in organizational psychology and corporate analytics. This case study investigates the agreement between expert and automated classifications of ego development stages, aiming to evaluate the potential of automation in this domain leveraging artificial intelligence and large language models. Cohen's kappa statistic has been used to measure the agreement between classifications made by experts and those generated by an automated process leveraging large language models. The comparison between the scoring of experts and large language models yielded a weighted Kappa value of 0.779, indicating a substantial level of agreement that is statistically meaningful and unlikely to be due to chance. While this suggests valuable scoring that leverages large language models, it also highlights the opportunity for further refinement to closely match expert assessments. We observed low variability in aggregated values, demonstrating that the automated process functions effectively at scale. The robustness of aggregated data is particularly evident when calculating ego development scores for individuals, groups, corporate units, and entire corporations. This capability underscores the utility of the automated system for high-level evaluations and decision-making leveraging on a solid indicator. While the classification system developed in this case study shows promise, targeted enhancements may help to achieve a level of accuracy and reliability that improves alignment with experts' evaluations for single sentences. The methodology developed in this case study appears to be useful to support other evaluations at scale that leverage large language models using other maps of classifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一路有你完成签到 ,获得积分10
刚刚
dodo完成签到,获得积分0
1秒前
刘宇完成签到,获得积分10
1秒前
LFY完成签到 ,获得积分10
2秒前
kiuikiu完成签到,获得积分10
2秒前
俭朴夜香完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
一个好昵称完成签到 ,获得积分10
3秒前
FUNG完成签到 ,获得积分10
3秒前
4秒前
tp040900发布了新的文献求助10
4秒前
淡然柚子发布了新的文献求助10
4秒前
谦让的凝阳完成签到,获得积分10
5秒前
hjx完成签到 ,获得积分10
5秒前
jj完成签到,获得积分10
5秒前
Siso发布了新的文献求助10
6秒前
深情安青应助小郭采纳,获得10
6秒前
mp5完成签到,获得积分10
6秒前
Zfx完成签到,获得积分10
7秒前
xkhxh完成签到 ,获得积分10
8秒前
老和山完成签到,获得积分10
8秒前
33完成签到 ,获得积分10
9秒前
老实皮皮虾完成签到,获得积分10
9秒前
10秒前
唠叨的天亦完成签到 ,获得积分10
10秒前
sure完成签到 ,获得积分10
11秒前
13秒前
机智咖啡豆完成签到 ,获得积分10
13秒前
wuda完成签到,获得积分10
14秒前
14秒前
HH完成签到,获得积分10
15秒前
蜀山刀客完成签到,获得积分10
16秒前
秦时明月完成签到,获得积分10
17秒前
高兴的垣发布了新的文献求助10
18秒前
20秒前
ymmmaomao23完成签到,获得积分10
20秒前
上杉绘梨衣完成签到,获得积分10
20秒前
领导范儿应助sunyanghu369采纳,获得10
21秒前
李健的粉丝团团长应助dudu采纳,获得30
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Exosomes from Umbilical Cord-Originated Mesenchymal Stem Cells (MSCs) Prevent and Treat Diabetic Nephropathy in Rats via Modulating the Wingless-Related Integration Site (Wnt)/β-Catenin Signal Transduction Pathway 500
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4030355
求助须知:如何正确求助?哪些是违规求助? 3569113
关于积分的说明 11356691
捐赠科研通 3299693
什么是DOI,文献DOI怎么找? 1816873
邀请新用户注册赠送积分活动 890973
科研通“疑难数据库(出版商)”最低求助积分说明 813978