亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SACHA: Soft Actor-Critic With Heuristic-Based Attention for Partially Observable Multi-Agent Path Finding

启发式 路径(计算) 可见的 计算机科学 数学优化 人工智能 数学 物理 量子力学 程序设计语言
作者
Qiushi Lin,Hang Ma
出处
期刊:IEEE robotics and automation letters 卷期号:8 (8): 5100-5107 被引量:18
标识
DOI:10.1109/lra.2023.3292004
摘要

Multi-Agent Path Finding (MAPF) is a crucial component for many large-scale robotic systems, where agents must plan their collision-free paths to their given goal positions. Recently, multi-agent reinforcement learning has been introduced to solve the partially observable variant of MAPF by learning a decentralized single-agent policy in a centralized fashion based on each agent's partial observation. However, existing learning-based methods are ineffective in achieving complex multi-agent cooperation, especially in congested environments, due to the non-stationarity of this setting. To tackle this challenge, we propose a multi-agent actor-critic method called Soft Actor-Critic with Heuristic-Based Attention (SACHA), which employs novel heuristic-based attention mechanisms for both the actors and critics to encourage cooperation among agents. SACHA learns a neural network for each agent to selectively pay attention to the shortest path heuristic guidance from multiple agents within its field of view, thereby allowing for more scalable learning of cooperation. SACHA also extends the existing multi-agent actor-critic framework by introducing a novel critic centered on each agent to approximate $Q$ -values. Compared to existing methods that use a fully observable critic, our agent-centered multi-agent actor-critic method results in more impartial credit assignment and better generalizability of the learned policy to MAPF instances with varying numbers of agents and types of environments. We also implement SACHA(C), which embeds a communication module in the agent's policy network to enable information exchange among agents. We evaluate both SACHA and SACHA(C) on a variety of MAPF instances and demonstrate decent improvements over several state-of-the-art learning-based MAPF methods with respect to success rate and solution quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Unicorn完成签到,获得积分10
28秒前
完美世界应助科研通管家采纳,获得10
34秒前
38秒前
华仔应助酷酷画笔采纳,获得10
1分钟前
1分钟前
酷酷画笔发布了新的文献求助10
1分钟前
1分钟前
情怀应助酷酷画笔采纳,获得30
1分钟前
无糖可乐发布了新的文献求助10
1分钟前
无糖可乐完成签到,获得积分10
2分钟前
Hinuo完成签到,获得积分10
2分钟前
Zx_1993应助Hinuo采纳,获得10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
Ava应助粉面菜蛋采纳,获得10
2分钟前
3分钟前
粉面菜蛋完成签到,获得积分10
3分钟前
马宁婧完成签到 ,获得积分10
3分钟前
粉面菜蛋发布了新的文献求助10
3分钟前
3分钟前
3分钟前
牛八先生完成签到,获得积分10
3分钟前
wise111发布了新的文献求助10
4分钟前
4分钟前
科目三应助Luochen采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高挑的橘子完成签到,获得积分10
4分钟前
4分钟前
WebCasa发布了新的文献求助100
4分钟前
一只不受管束的小狸Miao完成签到 ,获得积分10
4分钟前
张童鞋完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
Luochen发布了新的文献求助10
5分钟前
003完成签到,获得积分10
5分钟前
Luochen完成签到,获得积分10
5分钟前
6分钟前
123发布了新的文献求助10
7分钟前
123完成签到,获得积分10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595727
求助须知:如何正确求助?哪些是违规求助? 4680968
关于积分的说明 14818191
捐赠科研通 4652380
什么是DOI,文献DOI怎么找? 2535586
邀请新用户注册赠送积分活动 1503542
关于科研通互助平台的介绍 1469764