Display optimization under the multinomial logit choice model: Balancing revenue and customer satisfaction

计算机科学 采购 数学优化 多项式logistic回归 不相交集 收入 收益管理 序列(生物学) 产品(数学) 方案(数学) 运筹学 数学 经济 运营管理 数学分析 几何学 会计 组合数学 机器学习 生物 遗传学
作者
Jacob Feldman,Puping Jiang
出处
期刊:Production and Operations Management [Wiley]
卷期号:32 (11): 3374-3393 被引量:5
标识
DOI:10.1111/poms.14040
摘要

In this paper, we consider an assortment optimization problem in which a platform must choose pairwise disjoint sets of assortments to offer across a series of T stages. Arriving customers begin their search process in the first stage, and progress sequentially through the stages until their patience expires, at which point they make a multinomial logit–based purchasing decision from among all products they have viewed throughout their search process. The goal is to choose the sequential displays of product offerings to maximize expected revenue. Additionally, we impose stage‐specific constraints that ensure that as each customer progresses farther and farther through the T stages, there is a minimum level of “desirability” met by the collections of displayed products. We consider two related measures of desirability: purchase likelihood and expected utility derived from the offered assortments. In this way, the offered sequence of assortments must be both high earning and well liked, which breaks from the traditional assortment setting, where customer‐centric considerations are generally not explicitly accounted for. We show that our assortment problem of interest is strongly NP‐Hard, thus ruling out the existence of a fully polynomial‐time approximation scheme (FPTAS). From an algorithmic standpoint, as a warm‐up, we develop a simple constant factor approximation scheme in which we carefully stitch together myopically selected assortments for each stage. Our main algorithmic result consists of a polynomial‐time approximation scheme (PTAS), which combines a handful of structural results related to the make‐up of the optimal assortment sequence within an approximate dynamic programming framework. We also provide an additional approximation scheme, which, under mild assumptions, can handle a cardinality constraint that enforces that an exact number of new products are introduced at each stage. Using an extensive set of numerical experiments, we demonstrate that both algorithms exhibit excellent practical performance, producing sequences of assortments that are, on average, always within 2% of optimal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili发布了新的文献求助10
刚刚
汉堡包应助醉熏的鑫采纳,获得10
2秒前
天天快乐应助醉熏的鑫采纳,获得10
2秒前
李健应助醉熏的鑫采纳,获得10
2秒前
汉堡包应助醉熏的鑫采纳,获得10
2秒前
李健应助醉熏的鑫采纳,获得10
2秒前
大模型应助醉熏的鑫采纳,获得10
2秒前
领导范儿应助醉熏的鑫采纳,获得10
2秒前
852应助醉熏的鑫采纳,获得10
2秒前
共享精神应助醉熏的鑫采纳,获得10
2秒前
LLL应助醉熏的鑫采纳,获得10
2秒前
冯123发布了新的文献求助10
4秒前
未来可期给N型半导体的求助进行了留言
4秒前
转转发布了新的文献求助30
6秒前
现代孤萍完成签到,获得积分10
7秒前
lili完成签到,获得积分10
7秒前
Orange应助爱做科研的小希采纳,获得10
7秒前
慕青应助冯123采纳,获得10
8秒前
8秒前
555发布了新的文献求助10
9秒前
CipherSage应助隐形的冰海采纳,获得10
11秒前
脑洞疼应助小赐采纳,获得10
11秒前
Sewerant发布了新的文献求助10
11秒前
忽晚完成签到 ,获得积分10
12秒前
zzzc完成签到,获得积分10
13秒前
CAOHOU应助HughHonghao采纳,获得10
13秒前
yolo发布了新的文献求助10
15秒前
精明的甜瓜应助kcnco采纳,获得10
15秒前
小二郎应助认真的白风采纳,获得10
18秒前
王誓言发布了新的文献求助10
18秒前
19秒前
和谐井应助文件撤销了驳回
19秒前
20秒前
21秒前
烟花应助沉默的语琴采纳,获得20
22秒前
搜集达人应助沉默的语琴采纳,获得10
22秒前
研友_VZG7GZ应助沉默的语琴采纳,获得10
22秒前
赘婿应助沉默的语琴采纳,获得10
22秒前
小蘑菇应助沉默的语琴采纳,获得10
22秒前
共享精神应助沉默的语琴采纳,获得10
22秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4046392
求助须知:如何正确求助?哪些是违规求助? 3584051
关于积分的说明 11391429
捐赠科研通 3311782
什么是DOI,文献DOI怎么找? 1822239
邀请新用户注册赠送积分活动 894432
科研通“疑难数据库(出版商)”最低求助积分说明 816252