数学
吉布斯抽样
分位数回归
贝叶斯线性回归
拉普拉斯法
马尔科夫蒙特卡洛
分位数
应用数学
拉普拉斯分布
偏斜
统计
贝叶斯概率
贝叶斯推理
指数分布
作者
Hua-Zhong Yu,Long-Chuan Yu
标识
DOI:10.1080/00949655.2023.2204437
摘要
We propose flexible Bayesian quantile regression for a class of parametric nonlinear mixed effects models for longitudinal data based on the generalized asymmetric Laplace distribution, which exhibits more flexibility in skewness, mode and tail behaviour than the frequently used asymmetric Laplace distribution in quantile regression. An efficient Markov chain Monte Carlo procedure based on the adaptive random walk Metropolis-within-Gibbs sampling algorithm is derived for posterior inference. We demonstrate through simulation studies and empirical analysis that the proposed method could provide more accurate parameter estimation and better model fit than the existing methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI