Implementation of Ground-Based Lightning Locating System Using Particle Swarm Optimization Algorithm for Lightning Mapping and Monitoring

粒子群优化 闪电(连接器) 气象学 雷雨 计算机科学 多向性 遥感 雷击 雷电探测 算法 环境科学 地质学 工程类 地理 物理 结构工程 节点(物理) 量子力学 功率(物理)
作者
Kamyar Mehranzamir,Amin Beiranvand Pour,Zulkurnain Abdul‐Malek,Hadi Nabipour Afrouzi,Seyed Morteza Alizadeh,Mazlan Hashim
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (9): 2306-2306 被引量:4
标识
DOI:10.3390/rs15092306
摘要

Cloud-to-ground (CG) lightning is a natural phenomenon that poses significant threats to human safety, infrastructure, and equipment. The destructive impacts of lightning strikes on humans and their property have been a longstanding concern for both society and industry. Countries with high thunderstorm frequencies, such as Malaysia, experience significant fatalities and damage due to lightning strikes. To this end, a lightning locating system (LLS) was developed and deployed in a 400 km2 study area at the University Technology Malaysia (UTM), Johor, Malaysia for detecting cloud-to-ground lightning discharges. The study utilized a particle swarm optimization (PSO) algorithm as a mediator to identify the best location for a lightning strike. The algorithm was initiated with 30 particles, considering the outcomes of the MDF and TDOA techniques. The effectiveness of the PSO algorithm was found to be dependent on how the search process was arranged. The results of the detected lightning strikes by the PSO-based LLS were compared with an industrial lightning detection system installed in Malaysia. From the experimental data, the mean distance differences between the PSO-based LLS and the industrial LLS inside the study area was up to 573 m. Therefore, the proposed PSO-based LLS would be efficient and accurate to detect and map the lightning discharges occurring within the coverage area. This study is significant for researchers, insurance companies, and the public seeking to be informed about the impacts of lightning discharges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助boyis采纳,获得10
刚刚
yangyangyang发布了新的文献求助10
刚刚
丘比特应助萌萌采纳,获得10
刚刚
zhuxf完成签到,获得积分10
1秒前
1秒前
简单的冬瓜完成签到,获得积分10
1秒前
qingchidue发布了新的文献求助10
1秒前
Dorren完成签到,获得积分10
1秒前
不器完成签到 ,获得积分10
1秒前
吴开珍完成签到 ,获得积分10
3秒前
wanci应助sugkook采纳,获得10
3秒前
3秒前
天天快乐应助hu采纳,获得10
3秒前
3123939715完成签到,获得积分10
3秒前
Katherine完成签到,获得积分10
3秒前
爱上下雨天完成签到,获得积分10
3秒前
4秒前
alexy完成签到,获得积分10
4秒前
土豆丝完成签到 ,获得积分10
4秒前
半斤完成签到 ,获得积分10
4秒前
单纯的城完成签到,获得积分10
4秒前
YXYYXYYXY完成签到,获得积分10
4秒前
4秒前
一韩之信完成签到,获得积分10
4秒前
zwh完成签到,获得积分10
4秒前
文艺大白菜完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
zz完成签到 ,获得积分10
6秒前
6秒前
zasideler完成签到,获得积分10
6秒前
6秒前
7秒前
YJJ完成签到,获得积分10
7秒前
汉堡包应助11采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得30
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5247658
求助须知:如何正确求助?哪些是违规求助? 4412603
关于积分的说明 13733940
捐赠科研通 4283592
什么是DOI,文献DOI怎么找? 2350510
邀请新用户注册赠送积分活动 1347477
关于科研通互助平台的介绍 1307020