NeuroGrasp: Real-Time EEG Classification of High-Level Motor Imagery Tasks Using a Dual-Stage Deep Learning Framework

脑-机接口 运动表象 脑电图 计算机科学 抓住 人工智能 解码方法 推论 模式识别(心理学) 机器学习 语音识别 心理学 神经科学 电信 程序设计语言
作者
Jeong-Hyun Cho,Ji-Hoon Jeong,Seong‐Whan Lee
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (12): 13279-13292 被引量:63
标识
DOI:10.1109/tcyb.2021.3122969
摘要

Brain-computer interfaces (BCIs) have been widely employed to identify and estimate a user's intention to trigger a robotic device by decoding motor imagery (MI) from an electroencephalogram (EEG). However, developing a BCI system driven by MI related to natural hand-grasp tasks is challenging due to its high complexity. Although numerous BCI studies have successfully decoded large body parts, such as the movement intention of both hands, arms, or legs, research on MI decoding of high-level behaviors such as hand grasping is essential to further expand the versatility of MI-based BCIs. In this study, we propose NeuroGrasp, a dual-stage deep learning framework that decodes multiple hand grasping from EEG signals under the MI paradigm. The proposed method effectively uses an EEG and electromyography (EMG)-based learning, such that EEG-based inference at test phase becomes possible. The EMG guidance during model training allows BCIs to predict hand grasp types from EEG signals accurately. Consequently, NeuroGrasp improved classification performance offline, and demonstrated a stable classification performance online. Across 12 subjects, we obtained an average offline classification accuracy of 0.68 (±0.09) in four-grasp-type classifications and 0.86 (±0.04) in two-grasp category classifications. In addition, we obtained an average online classification accuracy of 0.65 (±0.09) and 0.79 (±0.09) across six high-performance subjects. Because the proposed method has demonstrated a stable classification performance when evaluated either online or offline, in the future, we expect that the proposed method could contribute to different BCI applications, including robotic hands or neuroprosthetics for handling everyday objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助结实的涵蕾采纳,获得10
2秒前
李总要发财小苏发文章完成签到,获得积分10
3秒前
蓝莓发布了新的文献求助10
3秒前
4秒前
李君完成签到,获得积分10
6秒前
英姑应助reegdsgsfd采纳,获得10
6秒前
元夕完成签到,获得积分10
7秒前
追寻清完成签到,获得积分10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
俊逸沅发布了新的文献求助30
8秒前
xiaojiu发布了新的文献求助10
8秒前
zeannezg完成签到 ,获得积分10
8秒前
姜小时完成签到,获得积分10
9秒前
9秒前
susu发布了新的文献求助10
11秒前
欢呼傲云发布了新的文献求助10
11秒前
可可完成签到 ,获得积分10
11秒前
LLL完成签到,获得积分10
12秒前
旧雨新知完成签到 ,获得积分0
12秒前
13秒前
March完成签到,获得积分10
13秒前
14秒前
优秀藏鸟完成签到 ,获得积分10
14秒前
zjuszk发布了新的文献求助10
14秒前
15秒前
15秒前
李君发布了新的文献求助10
18秒前
reegdsgsfd发布了新的文献求助10
19秒前
结实的涵蕾完成签到,获得积分10
20秒前
万能图书馆应助ZhouQixing采纳,获得10
20秒前
屈春洋发布了新的文献求助10
20秒前
20秒前
金金完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
蝗虫发布了新的文献求助10
21秒前
欢呼傲云完成签到,获得积分10
22秒前
姜露萍完成签到,获得积分10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5153328
求助须知:如何正确求助?哪些是违规求助? 4348935
关于积分的说明 13540497
捐赠科研通 4191458
什么是DOI,文献DOI怎么找? 2298955
邀请新用户注册赠送积分活动 1298923
关于科研通互助平台的介绍 1243897