Automatic detection of the spike-and-wave discharges in absence epilepsy for humans and rats using deep learning

计算机科学 脑电图 多窗口 人工智能 卷积神经网络 模式识别(心理学) 癫痫 Spike(软件开发) 深度学习 语音识别 机器学习 神经科学 生物 软件工程
作者
Oguzhan Baser,Melis Yavuz,Kutay Ugurlu,Filiz Onat,Berken Utku Demirel
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:76: 103726-103726 被引量:2
标识
DOI:10.1016/j.bspc.2022.103726
摘要

Automatic detection of spike-and-wave discharges (SWDs) of absence seizures, is a highly time-consuming process requiring trained technicians or neurologists to categorize thousands of non-overlapping epochs of electroencephalography (EEG) data by visually inspecting several interconnections among different channels. This paper aims to develop an algorithm for a non-invasive real-time detection of SWDs in the EEG recordings of humans with absence epilepsy and a genetic model of absence epilepsy. We develop a SWD detection framework using Convolutional Neural Networks. Our approach utilizes the nature of EEG signals; as the brain signals are dynamics in discrete time, we found that it is more efficient and useful to represent the signal’s power as a function of frequency and time using Thomson’s multitaper power spectral density estimation analysis. Our experiments show that the developed method classified SWDs in humans and rats with high diagnostic performance similar to that of the trained neurologists while using fewer channels, proving that the proposed algorithm can be applied to different domains where the main focus is the detection of SWDs. Although there are different methods to detect SWDs in humans and animals, we showed the need for efficient and more accurate SWD detection. The proposed method, characterized by low computational and memory requirements using non-invasive EEG techniques with fewer channels, offers an efficient multi-purposed deep learning framework to be implemented in wearable or portable devices for accurate real-time detection of SWD patterns in EEG signals. Eventually, the proposed method is a step towards detecting seizures and closed-loop seizure interventions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
沉静的安青完成签到,获得积分10
3秒前
酷波er应助科研通管家采纳,获得20
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Alex应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
4秒前
lidapan发布了新的文献求助10
5秒前
5秒前
6秒前
汉堡包应助222采纳,获得10
6秒前
bkagyin应助yyh采纳,获得10
6秒前
勤奋妙梦发布了新的文献求助10
7秒前
SYLH应助江小鱼在查文献采纳,获得10
8秒前
9秒前
10秒前
linlin发布了新的文献求助10
10秒前
13秒前
碧蓝的摩托完成签到,获得积分10
13秒前
夹子方糖发布了新的文献求助10
14秒前
LV完成签到,获得积分10
14秒前
lidapan完成签到,获得积分10
15秒前
Bystander完成签到 ,获得积分10
15秒前
15秒前
15秒前
薛定谔的猴儿完成签到,获得积分10
16秒前
Jasper应助linlin采纳,获得10
18秒前
搜集达人应助芸珂采纳,获得10
20秒前
yyh发布了新的文献求助10
20秒前
20秒前
22秒前
JayChou完成签到,获得积分10
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815084
求助须知:如何正确求助?哪些是违规求助? 3359118
关于积分的说明 10399973
捐赠科研通 3076659
什么是DOI,文献DOI怎么找? 1689963
邀请新用户注册赠送积分活动 813466
科研通“疑难数据库(出版商)”最低求助积分说明 767642