亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

multi-type neighbors enhanced global topology and pairwise attribute learning for drug–protein interaction prediction

计算机科学 节点(物理) 成对比较 背景(考古学) 网络拓扑 相似性(几何) 图形 拓扑(电路) 理论计算机科学 数据挖掘 人工智能 数学 计算机网络 生物 工程类 古生物学 图像(数学) 组合数学 结构工程
作者
Ping Xuan,Xiaowen Zhang,Yu Zhang,Kaimiao Hu,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:5
标识
DOI:10.1093/bib/bbac120
摘要

Abstract Motivation Accurate identification of proteins interacted with drugs helps reduce the time and cost of drug development. Most of previous methods focused on integrating multisource data about drugs and proteins for predicting drug–target interactions (DTIs). There are both similarity connection and interaction connection between two drugs, and these connections reflect their relationships from different perspectives. Similarly, two proteins have various connections from multiple perspectives. However, most of previous methods failed to deeply integrate these connections. In addition, multiple drug-protein heterogeneous networks can be constructed based on multiple kinds of connections. The diverse topological structures of these networks are still not exploited completely. Results We propose a novel model to extract and integrate multi-type neighbor topology information, diverse similarities and interactions related to drugs and proteins. Firstly, multiple drug–protein heterogeneous networks are constructed according to multiple kinds of connections among drugs and those among proteins. The multi-type neighbor node sequences of a drug node (or a protein node) are formed by random walks on each network and they reflect the hidden neighbor topological structure of the node. Secondly, a module based on graph neural network (GNN) is proposed to learn the multi-type neighbor topologies of each node. We propose attention mechanisms at neighbor node level and at neighbor type level to learn more informative neighbor nodes and neighbor types. A network-level attention is also designed to enhance the context dependency among multiple neighbor topologies of a pair of drug and protein nodes. Finally, the attribute embedding of the drug-protein pair is formulated by a proposed embedding strategy, and the embedding covers the similarities and interactions about the pair. A module based on three-dimensional convolutional neural networks (CNN) is constructed to deeply integrate pairwise attributes. Extensive experiments have been performed and the results indicate GCDTI outperforms several state-of-the-art prediction methods. The recall rate estimation over the top-ranked candidates and case studies on 5 drugs further demonstrate GCDTI’s ability in discovering potential drug-protein interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
栗子呢呢呢完成签到 ,获得积分10
6秒前
bkagyin应助小小采纳,获得10
7秒前
yyyyyy完成签到 ,获得积分10
8秒前
nnnick完成签到,获得积分0
8秒前
16秒前
嘟嘟嘟发布了新的文献求助10
21秒前
在水一方应助恭喜发财采纳,获得10
24秒前
乐乐应助众人皆醉我独醒采纳,获得10
26秒前
CipherSage应助Gaopkid采纳,获得10
29秒前
yema完成签到 ,获得积分10
29秒前
Gaopkid完成签到,获得积分10
33秒前
36秒前
momo完成签到,获得积分10
36秒前
37秒前
momo发布了新的文献求助10
41秒前
123456发布了新的文献求助10
42秒前
47秒前
123456完成签到,获得积分10
51秒前
52秒前
小马甲应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得30
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
科研学术完成签到,获得积分10
1分钟前
Owen应助不可说采纳,获得10
1分钟前
Z可完成签到 ,获得积分10
1分钟前
不可说完成签到,获得积分10
1分钟前
1分钟前
不可说发布了新的文献求助10
1分钟前
矮小的元灵完成签到 ,获得积分10
1分钟前
谨慎初蝶完成签到,获得积分10
1分钟前
wwho_O完成签到 ,获得积分10
1分钟前
852应助感性的梦竹采纳,获得10
1分钟前
CYC完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
恭喜发财发布了新的文献求助10
1分钟前
LIVE完成签到,获得积分20
1分钟前
mashibeo完成签到,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
How to Price: A Guide to Pricing Techniques and Yield Management 200
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833674
求助须知:如何正确求助?哪些是违规求助? 3376149
关于积分的说明 10492072
捐赠科研通 3095700
什么是DOI,文献DOI怎么找? 1704647
邀请新用户注册赠送积分活动 820054
科研通“疑难数据库(出版商)”最低求助积分说明 771792