A Multiparametric Fusion Deep Learning Model Based on DCE‐MRI for Preoperative Prediction of Microvascular Invasion in Intrahepatic Cholangiocarcinoma

接收机工作特性 医学 核医学 磁共振成像 肝内胆管癌 卷积神经网络 人口 放射科 人工智能 计算机科学 病理 内科学 环境卫生
作者
Wenyu Gao,Wentao Wang,Danjun Song,Kang Wang,Danlan Lian,Chun Yang,Kai Zhu,Jiaping Zheng,Mengsu Zeng,Shengxiang Rao,Manning Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (4): 1029-1039 被引量:18
标识
DOI:10.1002/jmri.28126
摘要

Background Assessment of microvascular invasion (MVI) in intrahepatic cholangiocarcinoma (ICC) by using a noninvasive method is an unresolved issue. Deep learning (DL) methods based on multiparametric fusion of MR images have the potential of preoperative assessment of MVI. Purpose To investigate whether a multiparametric fusion DL model based on MR images can be used for preoperative assessment of MVI in ICC. Study type Retrospective. Population A total of 519 patients (200 females and 319 males) with a single ICC were categorized as a training ( n = 361), validation ( n = 90), and an external test cohort ( n = 68). Field strength/Sequence A 1.5 T and 3.0 T; axial T2 ‐weighted turbo spin‐echo sequence, diffusion‐weighted imaging with a single‐shot spin‐echo planar sequence, and dynamic contrast‐enhanced ( DCE ) imaging with T1 ‐weighted three‐dimensional quick spoiled gradient echo sequence. Assessment DL models of multiparametric fusion convolutional neural network (CNN) and late fusion CNN were both constructed for evaluating MVI in ICC. Gradient‐weighted class activation mapping was used for visual interpretation of MVI status in ICC. Statistical Tests The DL model performance was assessed through the receiver operating characteristic curve (ROC) analysis, and the area under the ROC curve (AUC) with the accuracy, sensitivity, and specificity were measured. P value < 0.05 was considered as statistical significance. Results In the external test cohort, the proposed multiparametric fusion DL model achieved an AUC of 0.888 with an accuracy of 86.8%, sensitivity of 85.7%, and specificity of 87.0% for evaluating MVI in ICC, and the positive predictive value and negative predictive value were 63.2% and 95.9%, respectively. The late fusion DL model achieved a lower AUC of 0.866, with an accuracy of 83.8%, sensitivity of 78.6%, specificity of 85.2% for evaluating MVI in ICC. Data Conclusion Our DL model based on multiparametric fusion of MRI achieved a good diagnostic performance in the evaluation of MVI in ICC. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郁盈完成签到,获得积分10
刚刚
1秒前
3秒前
6秒前
111111发布了新的文献求助10
8秒前
狂奔弟弟2完成签到 ,获得积分10
9秒前
jnoker完成签到 ,获得积分10
12秒前
兴奋冷松完成签到,获得积分10
13秒前
16秒前
美满的小蘑菇完成签到 ,获得积分10
17秒前
shenglll完成签到 ,获得积分10
19秒前
狂奔弟弟完成签到 ,获得积分10
21秒前
小章鱼完成签到 ,获得积分10
21秒前
传奇3应助YoungLee采纳,获得10
22秒前
wang完成签到,获得积分10
22秒前
安安的小板栗完成签到,获得积分10
23秒前
龙抬头完成签到,获得积分10
23秒前
obaica发布了新的文献求助10
28秒前
always完成签到 ,获得积分10
29秒前
29秒前
大旭发布了新的文献求助10
33秒前
隐形的小蚂蚁完成签到,获得积分10
34秒前
Tysonqu完成签到,获得积分10
34秒前
奋斗跳跳糖完成签到,获得积分10
36秒前
luohan完成签到,获得积分10
37秒前
米里迷路完成签到 ,获得积分10
39秒前
yuzhang312完成签到 ,获得积分10
39秒前
111111完成签到,获得积分20
42秒前
火星上的泡芙完成签到,获得积分10
42秒前
pengpeng完成签到,获得积分10
43秒前
确幸完成签到,获得积分10
44秒前
44秒前
时尚雨兰完成签到,获得积分10
45秒前
桥豆麻袋完成签到,获得积分10
46秒前
爱学习完成签到,获得积分10
47秒前
MQ完成签到 ,获得积分10
49秒前
50秒前
陈鹿华完成签到 ,获得积分10
54秒前
幽默的妍发布了新的文献求助10
55秒前
独特乘风完成签到,获得积分10
56秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815941
求助须知:如何正确求助?哪些是违规求助? 3359404
关于积分的说明 10402536
捐赠科研通 3077257
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743