钨铬钴合金
材料科学
涂层
冶金
微观结构
耐磨堆焊
焊接
复合材料
硬化(计算)
消耗品
营销
业务
图层(电子)
作者
L. Hagen,Michael Paulus,Wolfgang Tillmann
标识
DOI:10.1007/s11666-022-01440-x
摘要
Abstract Due to their superior wear and oxidation resistance, Stellite™ coatings are widely used in industrial applications, where the coatings are exposed to high temperature. Common processes for applying Stellite™ coatings include the high-velocity oxy-fuel spraying, laser cladding, and plasma transferred arc welding. Although Stellite™ welding consumables or similar welding consumables in the form of cored wires (CoCr base without industrial property rights) are commercially available, there are hardly any studies on arc-sprayed Stellite™ coatings available in the literature. In this study, the microstructural characteristics of arc-sprayed deposits were investigated, which were produced using a CoCr-based cored wire with addition of 4.5 wt.% tungsten. The produced deposits were examined in its as-sprayed state as well as after exposed to elevated temperatures. The microstructure was scrutinized by means of electron microscopy, energy-dispersive x-ray spectroscopy, as well as x-ray diffraction analyses using synchrotron radiation. Tribo-mechanical tests were conducted in order to assess the performance of the arc-sprayed coating. The findings were discussed and compared to those obtained from conventional CoCr-based coatings. It was found that the arc-sprayed CoCr-based coating is predominantly composed of Co-rich, Cr-rich lamellae or lamellae comprising a Co(Cr)-rich solid solution interspersed with various oxides between the individual lamellae. Solid solution hardening serves as dominant strengthening mechanism, while precipitation hardening effects are hardly evident. With regard to the oxidation behaviour, the as-sprayed coating mainly contains CoCr 2 O 4 as well as traces of Co 3 O 4 . For heating above 550 °C, coating surface additionally consists of Fe 2 O 3 and Co 3 O 4 . In dry sliding experiments, the arc-sprayed CoCr-based coating shows a decreased wear resistance compared to CoCr-based coatings processed by HVOF and PTA, whereas the coefficient of friction (COF) sliding against alumina was similar to the COF observed for the HVOF-sprayed CoCr-based coating, but lower than the COF obtained for the CoCr-based hardfacing alloy deposited by PTA.
科研通智能强力驱动
Strongly Powered by AbleSci AI