Predicting Young Imposter Syndrome Using Ensemble Learning

随机森林 人工神经网络 集成学习 雪球取样 计算机科学 机器学习 人工智能 特征(语言学) 比例(比率) 集合预报 统计 数学 地理 语言学 地图学 哲学
作者
Md. Nafiul Alam Khan,Md Saef Ullah Miah,Md. Shahjalal,Talha Bin Sarwar,Md. Shahariar Rokon
出处
期刊:Complexity [Hindawi Publishing Corporation]
卷期号:2022 (1) 被引量:13
标识
DOI:10.1155/2022/8306473
摘要

Background . Imposter syndrome (IS), associated with self‐doubt and fear despite clear accomplishments and competencies, is frequently detected in medical students and has a negative impact on their well‐being. This study aimed to predict the students’ IS using the machine learning ensemble approach. Methods . This study was a cross‐sectional design among medical students in Bangladesh. Data were collected from February to July 2020 through snowball sampling technique across medical colleges in Bangladesh. In this study, we employed three different machine learning techniques such as neural network, random forest, and ensemble learning to compare the accuracy of prediction of the IS. Results . In total, 500 students completed the questionnaire. We used the YIS scale to determine the presence of IS among medical students. The ensemble model has the highest accuracy of this predictive model, with 96.4%, while the individual accuracy of random forest and neural network is 93.5% and 96.3%, respectively. We used different performance matrices to compare the results of the models. Finally, we compared feature importance scores between neural network and random forest model. The top feature of the neural network model is Y7, and the top feature of the random forest model is Y2, which is second among the top features of the neural network model. Conclusions . Imposter syndrome is an emerging mental illness in Bangladesh and requires the immediate attention of researchers. For instance, in order to reduce the impact of IS, identifying key factors responsible for IS is an important step. Machine learning methods can be employed to identify the potential sources responsible for IS. Similarly, determining how each factor contributes to the IS condition among medical students could be a potential future direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
George完成签到,获得积分10
刚刚
英姑应助张行采纳,获得10
刚刚
跳跃如南完成签到,获得积分10
刚刚
Uu发布了新的文献求助20
1秒前
1秒前
2秒前
null应助小小绿采纳,获得50
2秒前
李治海发布了新的文献求助10
3秒前
阔达紫青应助拼搏尔风采纳,获得10
3秒前
陈乐宁2024发布了新的文献求助10
4秒前
豆豆发布了新的文献求助10
4秒前
4秒前
6秒前
guo关闭了guo文献求助
6秒前
7秒前
wang5945发布了新的文献求助10
7秒前
丘比特应助wenwen采纳,获得10
7秒前
竹筏过海应助研友_kngjrL采纳,获得30
8秒前
香蕉觅云应助zpzp采纳,获得10
10秒前
10秒前
乐乐应助跳跃的白羊采纳,获得10
10秒前
10秒前
月落乌啼发布了新的文献求助10
11秒前
符欣瑜发布了新的文献求助10
11秒前
Stellan完成签到 ,获得积分10
12秒前
思源应助Yuanyuan采纳,获得10
13秒前
14秒前
Jasper应助CDX采纳,获得10
14秒前
15秒前
鸣笛应助花生采纳,获得10
15秒前
WuYiHHH完成签到,获得积分10
15秒前
16秒前
16秒前
乐乐应助符欣瑜采纳,获得10
17秒前
科研探索者完成签到,获得积分10
17秒前
pop完成签到,获得积分10
17秒前
17秒前
烟花应助yo一天采纳,获得10
18秒前
H_C完成签到,获得积分20
18秒前
阔达的无心完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4478351
求助须知:如何正确求助?哪些是违规求助? 3935846
关于积分的说明 12210724
捐赠科研通 3590566
什么是DOI,文献DOI怎么找? 1974377
邀请新用户注册赠送积分活动 1011678
科研通“疑难数据库(出版商)”最低求助积分说明 905165