Experimental investigations and prediction of WEDMed surface of nitinol SMA using SinGAN and DenseNet deep learning model

材料科学 形状记忆合金 形状记忆合金* 假弹性 机械加工 人工神经网络 酒窝 人工智能 机械工程 计算机科学 复合材料 算法 冶金 微观结构 工程类 马氏体
作者
Vinay Vakharia,Jay Vora,Sakshum Khanna,Rakesh Chaudhari,Milind Shah,Danil Yurievich Pimenov,Khaled Giasin,Parth Prajapati,Szymon Wojciechowski
出处
期刊:Journal of materials research and technology [Elsevier BV]
卷期号:18: 325-337 被引量:41
标识
DOI:10.1016/j.jmrt.2022.02.093
摘要

Shape memory alloys (SMA) hold a very promising place in the field of manufacturing, especially in biomedical and aerospace applications. Owing to the unique and favorable properties such as pseudo elasticity, shape memory effect and Superelasticity, Nitinol is the most popular amongst other SMAs. However, a major challenge lies in the final surface features of the machined component. In the current study, Nitinol rods were machined using the wire electrical discharge machining (WEDM) process and subsequently, the surfaces were investigated using the Field emission scanning electron miscroscope (FESEM) technique for the features. In addition to this, Singular Generative Adversarial Network (SinGAN) and DenseNet deep learning models were prepared and applied for the prediction of surface morphology and its correlation with the process parameters. It was concluded from the study that the DenseNet model was highly effective in predicting the surface images with 100% average accuracy both with training and testing whereas the least average accuracy of 99.13% and 98.98% with training and testing respectively are observed with the MNB model. Thus, the proposed methodology can prove to be highly beneficial for prediction, specifically for manufacturing applications where the data is limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助程忆采纳,获得10
2秒前
愤怒的茉莉完成签到,获得积分10
4秒前
4秒前
陈阳发布了新的文献求助10
4秒前
freeQQ完成签到,获得积分10
6秒前
无与伦比完成签到 ,获得积分10
6秒前
小夭发布了新的文献求助10
7秒前
脑洞疼应助louise采纳,获得10
8秒前
10秒前
wynne313完成签到 ,获得积分10
10秒前
luo完成签到,获得积分10
10秒前
小脑袋完成签到 ,获得积分10
11秒前
12秒前
14秒前
14秒前
超男发布了新的文献求助50
15秒前
15秒前
了晨发布了新的文献求助10
16秒前
AAA完成签到,获得积分10
16秒前
vv完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
程忆发布了新的文献求助10
18秒前
齐天大圣完成签到 ,获得积分10
19秒前
默默的聪健完成签到,获得积分10
20秒前
yidi01完成签到,获得积分10
20秒前
Profeto应助和平港湾采纳,获得10
21秒前
zz发布了新的文献求助10
21秒前
22秒前
22秒前
24秒前
火山暴涨球技完成签到,获得积分10
25秒前
25秒前
EE关闭了EE文献求助
26秒前
勋的猫发布了新的文献求助10
27秒前
27秒前
烟花应助zz采纳,获得10
28秒前
该房地产个人的完成签到,获得积分10
28秒前
29秒前
大气早晨发布了新的文献求助10
31秒前
day_on发布了新的文献求助10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4039128
求助须知:如何正确求助?哪些是违规求助? 3576801
关于积分的说明 11376528
捐赠科研通 3306531
什么是DOI,文献DOI怎么找? 1819465
邀请新用户注册赠送积分活动 892836
科研通“疑难数据库(出版商)”最低求助积分说明 815116