Choice-Based Airline Schedule Design and Fleet Assignment: A Decomposition Approach

计算机科学 地铁列车时刻表 分解 本德分解 运筹学 调度(生产过程) 水准点(测量) 网络规划与设计 利润(经济学) 航空 数学优化 工程类 经济 数学 生物 操作系统 大地测量学 航空航天工程 微观经济学 计算机网络 地理 生态学
作者
Chiwei Yan,Cynthia Barnhart,Vikrant Vaze
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:56 (6): 1410-1431 被引量:11
标识
DOI:10.1287/trsc.2022.1141
摘要

We study an integrated airline schedule design and fleet assignment model for constructing schedules by simultaneously selecting from a pool of optional flights and assigning fleet types to these scheduled flights. This is a crucial tactical decision that greatly influences airline profits. As passenger demand is often substitutable among available fare products (defined as a combination of an itinerary and a fare class) between the same origin–destination pair, we present an optimization approach that includes a passenger choice model for fare product selections. To tackle the formidable computational challenge of solving this large-scale network design problem, we propose a decomposition approach based on partitioning the flight network into smaller subnetworks by exploiting weak dependencies in network structure. The decomposition relies on a series of approximation analyses and a novel fare split problem to allocate optimally the fares of products that are shared by flights in different subnetworks. We present several reformulations that represent fleet assignment and schedule decisions and formally characterize their relative strengths. This gives rise to a new reformulation that is able to trade off strength and size flexibly. We conduct detailed computational experiments using two realistically sized airline instances to demonstrate the effectiveness of our approach. Under a simulated passenger booking environment with both perfect and imperfect forecasts, we show that the fleeting and scheduling decisions informed by our approach deliver significant and robust profit improvement over all benchmark implementations and previous models in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13333完成签到 ,获得积分10
1秒前
彭于晏应助踏实的师采纳,获得10
1秒前
1秒前
ljc发布了新的文献求助10
3秒前
我是老大应助勤恳的流沙采纳,获得10
3秒前
喜悦的绮露完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
危机的安容完成签到,获得积分10
5秒前
长欢发布了新的文献求助10
5秒前
快乐的小熊猫完成签到,获得积分10
5秒前
aaa142hehe完成签到 ,获得积分10
5秒前
HXX发布了新的文献求助30
6秒前
6秒前
钱多多发布了新的文献求助10
6秒前
田yg完成签到,获得积分10
7秒前
8秒前
ESCCD发布了新的文献求助10
8秒前
Vicou2025发布了新的文献求助10
9秒前
dm11发布了新的文献求助10
9秒前
9秒前
10秒前
南桑发布了新的文献求助10
11秒前
13秒前
ljc完成签到,获得积分10
13秒前
钱多多完成签到,获得积分10
13秒前
14秒前
1199发布了新的文献求助10
15秒前
祭酒完成签到 ,获得积分10
16秒前
迅速乌龟发布了新的文献求助10
18秒前
18秒前
青街向晚发布了新的文献求助10
19秒前
失眠耳机发布了新的文献求助50
19秒前
Orange应助冯玉石采纳,获得10
20秒前
20秒前
Orange应助猪猪hero采纳,获得10
20秒前
小蘑菇应助king采纳,获得10
21秒前
NANNAN完成签到,获得积分20
22秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Oxford Handbook of Chinese Philosophy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834931
求助须知:如何正确求助?哪些是违规求助? 3377433
关于积分的说明 10498261
捐赠科研通 3096910
什么是DOI,文献DOI怎么找? 1705240
邀请新用户注册赠送积分活动 820511
科研通“疑难数据库(出版商)”最低求助积分说明 772110