Improving de novo molecular design with curriculum learning

强化学习 课程 计算机科学 人气 生产力 过程(计算) 人工智能 心理学 操作系统 宏观经济学 经济 社会心理学 教育学
作者
Jeff Guo,Vendy Fialková,Juan Diego Arango,Christian Margreitter,Jon Paul Janet,Kostas Papadopoulos,Ola Engkvist,Atanas Patronov
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (6): 555-563 被引量:38
标识
DOI:10.1038/s42256-022-00494-4
摘要

Reinforcement learning is a powerful paradigm that has gained popularity across multiple domains. However, applying reinforcement learning may come at the cost of multiple interactions between the agent and the environment. This cost can be especially pronounced when the single feedback from the environment is slow or computationally expensive, causing extensive periods of non-productivity. Curriculum learning provides a suitable alternative by arranging a sequence of tasks of increasing complexity, with the aim of reducing the overall cost of learning. Here we demonstrate the application of curriculum learning for drug discovery. We implement curriculum learning in the de novo design platform REINVENT, and apply it to illustrative molecular design problems of different complexities. The results show both accelerated learning and a positive impact on the quality of the output when compared with standard policy-based reinforcement learning. While reinforcement learning can be a powerful tool for complex design tasks such as molecular design, training can be slow when problems are either too hard or too easy, as little is learned in these cases. Jeff Guo and colleagues provide a curriculum learning extension to the REINVENT de novo molecular design framework that provides problems of increasing difficulty over epochs such that the training process is more efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
脑洞疼应助虚幻盼晴采纳,获得10
1秒前
大力水手完成签到,获得积分10
1秒前
无敌最俊朗完成签到,获得积分10
1秒前
李爱国应助扶手采纳,获得10
3秒前
3秒前
xiaoming完成签到,获得积分10
3秒前
NB发布了新的文献求助10
4秒前
阿飞完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
lyj发布了新的文献求助10
5秒前
0318发布了新的文献求助10
8秒前
浪迹发布了新的文献求助10
8秒前
董羽佳完成签到,获得积分10
8秒前
9秒前
狼主完成签到 ,获得积分10
9秒前
ZHYChen完成签到,获得积分10
9秒前
科研通AI2S应助yvaine采纳,获得10
9秒前
朴素的月光完成签到,获得积分10
9秒前
zhaideqi7发布了新的文献求助10
10秒前
李爱国应助曾建采纳,获得10
11秒前
kx完成签到,获得积分10
11秒前
春樹暮雲完成签到 ,获得积分10
12秒前
乐乐应助你再说一遍采纳,获得10
12秒前
sp完成签到,获得积分10
12秒前
liang完成签到 ,获得积分10
12秒前
15884134873完成签到,获得积分10
12秒前
虚幻盼晴发布了新的文献求助10
13秒前
13秒前
学术达人应助ZJPPPP采纳,获得50
13秒前
14秒前
EBA完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
16秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938942
求助须知:如何正确求助?哪些是违规求助? 3484849
关于积分的说明 11029872
捐赠科研通 3214699
什么是DOI,文献DOI怎么找? 1776842
邀请新用户注册赠送积分活动 863047
科研通“疑难数据库(出版商)”最低求助积分说明 798700