医学
磁共振成像
胸主动脉
磁共振血管造影
主动脉
置信区间
放射科
动脉炎
心脏病学
内科学
核医学
作者
Nan Zhang,Lili Pan,Jiayi Liu,Yu Li,Lei Xu,Zhonghua Sun,Zhenchang Wang
标识
DOI:10.31083/j.rcm2303092
摘要
Background: Determination of disease activity in Takayasu arteritis (TAK) is crucial for clinical management but challenging. The value of different magnetic resonance imaging (MRI) characteristics for the assessment of disease activity remains unclear. This study investigated the imaging findings of the thoracic aortic wall and elasticity by using a comprehensive 3.0 T MRI protocol. Methods: We prospectively enrolled 52 consecutive TAK patients. TAK activity was recorded according to the ITAS2010. All the patients underwent thoracic aortic MRI. The luminal morphology of the thoracic aorta and its main branches were quantitatively evaluated using a contrast-enhanced magnetic resonance angiography (MRA) sequence. The maximum wall thickness of the thoracic aorta, postcontrast enhancement ratio, and aortic wall edema were analyzed in each patient through pre- and post-enhanced T1-weighted and T2-weighted imaging. Pulse-wave velocity (PWV) of the thoracic aorta was calculated using a four-dimensional flow technique. Results: The majority of the 52 patients had type V disease (34.62%, 18/52). Among all the MRI indicators of the thoracic aorta, the area under the curve was the largest for the maximal wall thickness (0.804, 95% confidence interval [CI] = 0.667–0.941). The maximal wall thickness (93.33%, 95% CI = 68.1%–99.8%) exhibited the highest sensitivity with a cutoff value of 3.12 mm. Wall edema (84.00%, 95% CI = 63.9%–95.5%) presented the highest specificity. A positive correlation was noted between PWV and patients’ age (r = 0.54, p < 0.001), disease duration (r = 0.52, p < 0.001), and the maximum wall thickness (r = 0.45, p = 0.001). Conclusions: MRI enabled the comprehensive assessment of aortic wall morphology and functional markers for TAK disease activity. Aortic maximal wall thickness was the most accurate indicator of TAK activity. The early phase was superior to the delay phase for aortic wall enhancement analysis for assessing TAK activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI