Task offloading mechanism based on federated reinforcement learning in mobile edge computing

计算机科学 强化学习 能源消耗 移动边缘计算 服务质量 计算卸载 边缘计算 分布式计算 计算机网络 服务器 GSM演进的增强数据速率 人工智能 生态学 生物
作者
Jie Li,Zhiping Yang,Xingwei Wang,Yichao Xia,Shijian Ni
出处
期刊:Digital Communications and Networks [Elsevier]
卷期号:9 (2): 492-504 被引量:36
标识
DOI:10.1016/j.dcan.2022.04.006
摘要

With the arrival of 5G, latency-sensitive applications are becoming increasingly diverse. Mobile Edge Computing (MEC) technology has the characteristics of high bandwidth, low latency and low energy consumption, and has attracted much attention among researchers. To improve the Quality of Service (QoS), this study focuses on computation offloading in MEC. We consider the QoS from the perspective of computational cost, dimensional disaster, user privacy and catastrophic forgetting of new users. The QoS model is established based on the delay and energy consumption and is based on DDQN and a Federated Learning (FL) adaptive task offloading algorithm in MEC. The proposed algorithm combines the QoS model and deep reinforcement learning algorithm to obtain an optimal offloading policy according to the local link and node state information in the channel coherence time to address the problem of time-varying transmission channels and reduce the computing energy consumption and task processing delay. To solve the problems of privacy and catastrophic forgetting, we use FL to make distributed use of multiple users’ data to obtain the decision model, protect data privacy and improve the model universality. In the process of FL iteration, the communication delay of individual devices is too large, which affects the overall delay cost. Therefore, we adopt a communication delay optimization algorithm based on the unary outlier detection mechanism to reduce the communication delay of FL. The simulation results indicate that compared with existing schemes, the proposed method significantly reduces the computation cost on a device and improves the QoS when handling complex tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
katata完成签到 ,获得积分10
2秒前
科研通AI2S应助Robin采纳,获得10
7秒前
caixiaoz发布了新的文献求助10
8秒前
忧伤的绍辉完成签到 ,获得积分10
8秒前
松林发布了新的文献求助10
12秒前
搜集达人应助超级襄采纳,获得10
13秒前
杨三多完成签到,获得积分10
14秒前
caixiaoz完成签到,获得积分10
18秒前
新手请多指教完成签到,获得积分10
20秒前
Orange应助yunt采纳,获得10
25秒前
27秒前
28秒前
外雪完成签到 ,获得积分10
28秒前
Faye完成签到 ,获得积分10
28秒前
行走完成签到,获得积分10
32秒前
清欢完成签到 ,获得积分10
36秒前
37秒前
小高完成签到 ,获得积分10
39秒前
李倩完成签到 ,获得积分10
39秒前
松林发布了新的文献求助10
40秒前
小屁孩完成签到,获得积分10
43秒前
45秒前
李健应助yanj520925采纳,获得10
45秒前
pi完成签到 ,获得积分10
45秒前
Ivy完成签到 ,获得积分10
46秒前
ʚᵗᑋᵃᐢᵏ ᵞᵒᵘɞ完成签到,获得积分10
47秒前
49秒前
猪爸爸发布了新的文献求助10
50秒前
zsp完成签到 ,获得积分10
50秒前
超级襄发布了新的文献求助10
56秒前
念0完成签到 ,获得积分10
56秒前
赛博完成签到,获得积分10
58秒前
俭朴尔白应助科研通管家采纳,获得10
58秒前
JamesPei应助科研通管家采纳,获得10
58秒前
传奇3应助科研通管家采纳,获得10
59秒前
Jasper应助科研通管家采纳,获得10
59秒前
NexusExplorer应助科研通管家采纳,获得10
59秒前
59秒前
Zx_1993应助科研通管家采纳,获得10
59秒前
俭朴尔白应助科研通管家采纳,获得10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5559048
求助须知:如何正确求助?哪些是违规求助? 4644203
关于积分的说明 14671827
捐赠科研通 4585430
什么是DOI,文献DOI怎么找? 2515597
邀请新用户注册赠送积分活动 1489571
关于科研通互助平台的介绍 1460442