合并(业务)
比奥数
各向同性
多孔性
地质学
弹性模量
岩土工程
模数
剪切(地质)
剪切速度
体积模量
横波
剪切模量
矿物学
机械
材料科学
岩石学
地球物理学
复合材料
物理
湍流
业务
会计
量子力学
出处
期刊:Scientific Investigations Report
日期:2005-01-01
被引量:62
摘要
Velocities of water-saturated isotropic sandstones under low frequency can be modeled using the Biot-Gassmann theory if the moduli of dry rocks are known. On the basis of effective medium theory by Kuster and Toksoz, bulk and shear moduli of dry sandstone are proposed. These moduli are related to each other through a consolidation parameter and provide a new way to calculate elastic velocities. Because this parameter depends on differential pressure and the degree of consolidation, the proposed moduli can be used to calculate elastic velocities of sedimentary rocks under different in-place conditions by varying the consolidation parameter. This theory predicts that the ratio of P-wave to S-wave velocity (Vp/Vs) of a dry rock decreases as differential pressure increases and porosity decreases. This pattern of behavior is similar to that of water-saturated sedimentary rocks. If microcracks are present in sandstones, the velocity ratio usually increases as differential pressure increases. This implies that this theory is optimal for sandstones having intergranular porosities. Even though the accurate behavior of the consolidation parameter with respect to differential pressure or the degree of consolidation is not known, this theory presents a new way to predict S-wave velocity from P-wave velocity and porosity and to calculate elastic velocities of gas-hydrate-bearing sediments. For given properties of sandstones such as bulk and shear moduli of matrix, only the consolidation parameter affects velocities, and this parameter can be estimated directly from the measurements; thus, the prediction of S-wave velocity is accurate, reflecting in-place conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI