[The history of the development and changes of quinolone antibacterial agents].

喹诺酮类 诺氟沙星 DNA旋转酶 萘啶酸 抗生素 抗菌剂 微生物学 抗菌活性 药理学 化学 细菌 医学 生物 环丙沙星 大肠杆菌 生物化学 基因 遗传学
作者
Hisashi Takahashi,I Hayakawa,Takeshi Akimoto
出处
期刊:PubMed 卷期号:38 (2): 161-79 被引量:42
链接
标识
摘要

The quinolones, especially the new quinolones (the 6-fluoroquinolones), are the synthetic antibacterial agents to rival the Beta-lactam and the macrolide antibacterials for impact in clinical usage in the antibacterial therapeutic field. They have a broad antibacterial spectrum of activity against Gram-positive, Gram-negative and mycobacterial pathogens as well as anaerobes. Further, they show good-to-moderate oral absorption and tissue penetration with favorable pharmacokinetics in humans resulting in high clinical efficacy in the treatment of many kinds of infections. They also exhibit excellent safety profiles as well as those of oral Beta-lactam antibiotics. The bacterial effects of quinolones inhibit the function of bacterial DNA gyrase and topoisomerase IV. The history of the development of the quinolones originated from nalidixic acid (NA), developed in 1962. In addition, the breakthrough in the drug design for the scaffold and the basic side chains have allowed improvements to be made to the first new quinolone, norfloxacin (NFLX), patented in 1978. Although currently more than 10,000 compounds have been already synthesized in the world, only two percent of them were developed and tested in clinical studies. Furthermore, out of all these compounds, only twenty have been successfully launched into the market. In this paper, the history of the development and changes of the quinolones are described from the first quinolone, NA, via, the first new quinolone (6-fluorinated quinolone) NFLX, to the latest extended-spectrum quinolone antibacterial agents against multi-drug resistant bacterial infections. NA has only modest activity against Gram-negative bacteria and low oral absorption, therefore a suitable candidate for treatment of systemic infections (UTIs) is required. Since the original discovery of NA, a series of quinolones, which are referred to as the old quinolones, have been developed leading to the first new quinolone, NFLX, with moderate improvements in over all properties starting in 1962 through and continuing throughout the 1970's. Especially, the drug design for pipemidic acid (PPA) indicated one of the important breakthroughs that lead to NFLX. The introduction of a piperazinyl group, which ia a basic moiety at the C7-position of the quinolone nuclei, improved activity against Gram-negative organisms broadening the spectrum to include Pseudomonas aeruginosa. PPA also showed soem activity against Gram-positive bac teria. The basic piperazine ring, which can form the zwitterionic natrure with the carboxylic acid at the C3-position, has subsequently been shown to increase the ability of the drugs to penetrate the bacterial cells resulting in enhanced activity. Further, the zwitterionic forms resulted in significant tissue penetration in the pharmacokinetics. On the other hand, the first compound with a fluorine atom at the C6-position of the related quinolone scaffold was flumequine and the compound indicated that activity against Gram-positive bacteria could be improved in the old quinolones. The addition of a flourine atom at the C6-position is essential for the inhibition of target enzymes. The results show the poten antibacterial activity and the penetration of the quinolone molecule into the bacterial cells and human tissue. The real breakthrough came with the combination of these two features in NFLX, a 6-fluorinated quinolone having a piperazinyl group at the C7-position, NFLX features significant differences from the old quinolones in the activities and pharmacokinetics in humans, resulting in high clinical efficacy in the treatment of many kinds of infections including RTIs.Consequently, those great discoveries are rapidly superseded by even better compounds and NFLX proved to be just the beginning of a highly successful period of research into the modifications of the new quinolone antibacterials. Simce the chemical structure and important features of NFLX had become apparent in 1978, many compounds were patented in the next three years, several of which reached the market. Among the drugs, ofloxacin (OFLX) and ciprofloxacin (CPFX) are recognized as superior in several respects to the oral beta-lactam antibiotics as an antibacterial agent. With a focus on OFLX and CPFX, numerous research groups entered the antibacterial therapeutic field, triggering intense competition in the search to find newer, more effective quinolones. After NFLX was introduced in the market, while resulting by the end of today, eleven kinds of other new quinolones launched in Japan. They are enoxacin (ENX), OFLX, CPFX, lomefloxacin (LFLX), fleroxacin (FRLX), tosufloxacin (TFLX), levofloxacin (LVFX), sparfloxacin (SPFX), gatifloxacin (GFLX), prulifloxacin (PULX) and also pazufloxacin (PZFX). The advantages of these compounds, e.g., LVFX, SPFX and GFLX, are that their spectrum includes Gram-positive bacteria species as well as Gram-negative bacteria and they improve bioavailability results when a daily dose is administered for systemic infections including RTIs. However, unexpected adverse reactions, such as the CNS reaction, the drug-drug interaction, phototoxicity, hepatotoxicity and cardiotoxicity such as the QTc interval prolongation of ECG, have been reported in the clinical evaluations or the post-marketing surveillance of several new quinolones. Moreover, the adverse reactions of arthropathy (the joint toxicity) predicated from studies in juvenile animals have never materialized in clinical use. Therefore, no drugs other than NFLX have yet been approved for pediatric use. Fortunately, the newer quinolones are being developed and tested to reduce these adverse reactions on the basis of recent studies. On the other hand, multi-drug resistant Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant coagulase-negative staphycolocci (MRCNS), penicillin-resistant Streptococcus pneumoniae (PRSP) and vancomycin-resistant enterococci (VRE) have been a serious problem in the medical community. Recently, the new quinolone antibacterials are highly successful class of antibacterial therapeutic field, however, the increased isolation of quinolone-resistant bacteria above them has become a normal outcome. These problems of multi-drug resistance have been the driving force for the development of newer quinolones. The next gereration of quinolone antibacterial agents will be potent against multi-drug resistant bacteria, such as MRSA, and provide a lower rate of emergence in resistance. Further, they should have favorable safety profiles to reduce the adverse reactions. The future of quinolones as the ultimate in pharmaceuticals must be handled cautiously if they are to realize their potential in the medical community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王浩发布了新的文献求助10
刚刚
1秒前
1秒前
channy发布了新的文献求助10
1秒前
Ade完成签到,获得积分10
1秒前
1秒前
bai发布了新的文献求助10
1秒前
蛋包洋芋发布了新的文献求助10
2秒前
露露完成签到,获得积分10
3秒前
3秒前
2464259931发布了新的文献求助10
3秒前
长风发布了新的文献求助10
4秒前
123456发布了新的文献求助30
4秒前
赘婿应助优美饼干采纳,获得10
7秒前
xiaoyu123发布了新的文献求助10
7秒前
7秒前
9秒前
生动友容发布了新的文献求助10
9秒前
百川发布了新的文献求助10
11秒前
112发布了新的文献求助10
12秒前
12秒前
科研通AI5应助kenna123采纳,获得10
13秒前
dukemon完成签到,获得积分20
14秒前
15秒前
科研通AI5应助机智的店长采纳,获得10
16秒前
科研通AI5应助ylqqq采纳,获得30
17秒前
xpeng发布了新的文献求助10
18秒前
荟萃分析应助actor2006采纳,获得30
19秒前
20秒前
谷蓝完成签到,获得积分10
20秒前
常乐发布了新的文献求助10
21秒前
22秒前
哭泣的吐司完成签到,获得积分10
23秒前
fang发布了新的文献求助10
24秒前
不想干活应助mairs采纳,获得10
26秒前
蛋包洋芋完成签到,获得积分10
26秒前
Sakura发布了新的文献求助30
27秒前
27秒前
小二郎应助xpeng采纳,获得10
28秒前
香蕉觅云应助呜呼啦呼采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 1000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4438111
求助须知:如何正确求助?哪些是违规求助? 3911569
关于积分的说明 12148116
捐赠科研通 3558169
什么是DOI,文献DOI怎么找? 1953156
邀请新用户注册赠送积分活动 992988
科研通“疑难数据库(出版商)”最低求助积分说明 888508