| 标题 |
Predicting Early AKI in Two Large Multicenter Pediatric Critical Care Datasets 相关领域
医学
重症监护医学
多中心研究
急诊医学
内科学
随机对照试验
|
| 网址 |
求助人暂未提供
|
| DOI |
暂未提供,该求助的时间将会延长,查看原因?
|
| 其它 |
Journal of the American Society of Nephrology 2024 35 (471) Background: Machine learning (ML) can predict adverse events such as acute kidney injury (AKI) in critically ill children, allowing for proactive care strategies. Most models for pediatric AKI prediction are developed on single-center data which limits generalizability. In this study we externally validate an existing single-center-derived AKI prediction model, recalibrate, and add features on two of the largest multicenter pediatric critical care datasets available. |
| 求助人 | |
| 下载 | 该求助完结已超 24 小时,文件已从服务器自动删除,无法下载。 |
|
温馨提示:该文献已被科研通 学术中心 收录,前往查看
科研通『学术中心』是文献索引库,收集文献的基本信息(如标题、摘要、期刊、作者、被引量等),不提供下载功能。如需下载文献全文,请通过文献求助获取。
|