| 标题 |
Predicting Discharge to Long-term Acute Care (LTAC) Facility With Machine Learning Using Electronic Health Record Data 相关领域
医学
期限(时间)
健康档案
电子健康档案
医疗急救
急症护理
重症监护医学
医疗保健
经济增长
量子力学
物理
经济
|
| 网址 | |
| DOI |
暂未提供,该求助的时间将会延长,查看原因?
|
| 其它 | RATIONALE: Intensive care is a substantial financial burden to the US healthcare system. These increasing costs for ICU services are driven in part by a subgroup of chronically critically ill patients who are typically dependent on long-term life support. Therefore, the transition between ICU and long-term acute care (LTAC) is a critical juncture in the continuum of care. Improving prediction of LTAC facility disposition could have important benefits to improve resource management and promote decreased costs for patients, payors, and hospitals alike. We aimed to use a machine-learning technique to predict patients' discharge to LTAC based on early clinical indicators in the ICU. |
| 求助人 | |
| 下载 | |
|
温馨提示:该文献已被科研通 学术中心 收录,前往查看
科研通『学术中心』是文献索引库,收集文献的基本信息(如标题、摘要、期刊、作者、被引量等),不提供下载功能。如需下载文献全文,请通过文献求助获取。
|