Domino electroreduction of CO2 to methanol on a molecular catalyst

甲醇 电催化剂 催化作用 酞菁 法拉第效率 选择性 碳纳米管 化学 光化学 组合化学 电化学 二氧化碳电化学还原 一氧化碳 无机化学 材料科学 电极 有机化学 纳米技术 物理化学
作者
Yueshen Wu,Zhan Jiang,Lu Xu,Yongye Liang,Hailiang Wang
出处
期刊:Nature [Springer Nature]
卷期号:575 (7784): 639-642 被引量:773
标识
DOI:10.1038/s41586-019-1760-8
摘要

Electrochemical carbon dioxide (CO2) reduction can in principle convert carbon emissions to fuels and value-added chemicals, such as hydrocarbons and alcohols, using renewable energy, but the efficiency of the process is limited by its sluggish kinetics1,2. Molecular catalysts have well defined active sites and accurately tailorable structures that allow mechanism-based performance optimization, and transition-metal complexes have been extensively explored in this regard. However, these catalysts generally lack the ability to promote CO2 reduction beyond the two-electron process to generate more valuable products1,3. Here we show that when immobilized on carbon nanotubes, cobalt phthalocyanine—used previously to reduce CO2 to primarily CO—catalyses the six-electron reduction of CO2 to methanol with appreciable activity and selectivity. We find that the conversion, which proceeds via a distinct domino process with CO as an intermediate, generates methanol with a Faradaic efficiency higher than 40 per cent and a partial current density greater than 10 milliamperes per square centimetre at −0.94 volts with respect to the reversible hydrogen electrode in a near-neutral electrolyte. The catalytic activity decreases over time owing to the detrimental reduction of the phthalocyanine ligand, which can be suppressed by appending electron-donating amino substituents to the phthalocyanine ring. The improved molecule-based electrocatalyst converts CO2 to methanol with considerable activity and selectivity and with stable performance over at least 12 hours. Individual cobalt phthalocyanine derivative molecules immobilized on carbon nanotubes effectively catalyse the electroreduction of CO2 to methanol via a domino process with high activity and selectivity and stable performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黑驴发布了新的文献求助10
1秒前
wang完成签到,获得积分10
1秒前
1秒前
勤恳怀梦发布了新的文献求助10
1秒前
SciGPT应助朝气采纳,获得10
2秒前
温暖的问候完成签到,获得积分10
3秒前
3秒前
可闻春风完成签到,获得积分10
3秒前
能干大树完成签到,获得积分10
3秒前
4秒前
Di完成签到 ,获得积分10
5秒前
6秒前
不安青牛应助果冻布丁采纳,获得10
6秒前
张张发布了新的文献求助10
6秒前
语物应助纳斯达克采纳,获得20
6秒前
wangzhipeng完成签到,获得积分10
7秒前
WQ完成签到,获得积分10
7秒前
运气贼好的熊猫完成签到 ,获得积分10
7秒前
炙热盼兰完成签到 ,获得积分10
7秒前
7秒前
宁阿霜完成签到,获得积分10
9秒前
zhy完成签到 ,获得积分10
9秒前
mjtsurgery发布了新的文献求助10
9秒前
米乐时光完成签到 ,获得积分10
9秒前
9秒前
敏感的SCI完成签到,获得积分10
10秒前
10秒前
orange发布了新的文献求助10
13秒前
少雄完成签到,获得积分10
13秒前
小狸跟你拼啦完成签到,获得积分10
14秒前
W哇完成签到,获得积分10
15秒前
天真白萱完成签到 ,获得积分10
15秒前
小小科研人完成签到,获得积分20
16秒前
Janice完成签到,获得积分10
16秒前
chenhuan发布了新的文献求助10
16秒前
kkkklo完成签到,获得积分10
17秒前
zzz完成签到,获得积分10
18秒前
传奇3应助nightmare采纳,获得10
19秒前
雁过完成签到 ,获得积分10
19秒前
19秒前
高分求助中
Lorenz Luthi - The Regional Cold Wars in Europe, East Asia, and the Middle East Crucial Periods and Turning Points 1000
Models of Teaching(The 10th Edition,第10版!)《教学模式》(第10版!) 800
Full waveform acoustic data processing 500
Operative Techniques in Pediatric Orthopaedic Surgery 400
More Activities for Teaching Positive Psychology A Guide for Instructors 330
The Chinese student movement 300
Understanding gratifications for engaging with short-video: a comparison of TikTok use in the USA and China 200
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2884128
求助须知:如何正确求助?哪些是违规求助? 2502657
关于积分的说明 6774482
捐赠科研通 2179790
什么是DOI,文献DOI怎么找? 1158709
版权声明 586449
科研通“疑难数据库(出版商)”最低求助积分说明 568511