A Revisited Mechanism of the Graphite-to-Diamond Transition at High Temperature

钻石 石墨 材料科学 金刚石材料性能 菱形 化学物理 金刚石立方 碳纤维 相变 微观结构 晶体孪晶 结晶学 纳米技术 凝聚态物理 复合材料 化学 物理 复合数
作者
Shengcai Zhu,Xiaozhi Yan,Jin Liu,Artem R. Oganov,Qiang Zhu
出处
期刊:Matter [Elsevier]
卷期号:3 (3): 864-878 被引量:28
标识
DOI:10.1016/j.matt.2020.05.013
摘要

Graphite and diamond are two well-known allotropes of carbon with distinct physical properties due to different atomic connectivity. Graphite has a layered structure in which the honeycomb carbon sheets can easily glide, while atoms in diamond are strongly bonded in all three dimensions. The transition from graphite to diamond has been a central subject in physical science. One way to turn graphite into diamond is to apply the high pressure and high temperature (HPHT) conditions. However, atomistic mechanism of this transition is still under debate. From a series of large-scale molecular dynamics (MD) simulations, we report a mechanism that the diamond nuclei originate at the graphite grain boundaries and propagate in two preferred directions. In addition to the widely accepted [001] direction, we found that the growth along [120] direction of graphite is even faster. In this scenario, cubic diamond (CD) is the kinetically favorable product, while hexagonal diamond (HD) would appear as minor amounts of twinning structures in two main directions. Following the crystallographic orientation relationship, the coherent interface t-(100)gr//(11-1)cd + [010]gr//[1-10]cd was also confirmed by high-resolution transmission electron microscopy (HR-TEM) experiment. The proposed phase transition mechanism does not only reconcile the longstanding debate regarding the role of HD in graphite-diamond transition, but also yields the atomistic insight into microstructure engineering via controlled solid phase transition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助周周采纳,获得30
1秒前
2秒前
小二郎应助颖仔采纳,获得10
3秒前
LiueYoung应助李雨璇采纳,获得10
5秒前
6秒前
mwj发布了新的文献求助10
6秒前
丘比特应助daihq3采纳,获得10
10秒前
11秒前
H0neYvia完成签到,获得积分10
13秒前
14秒前
852应助浊酒采纳,获得10
18秒前
Kuzu发布了新的文献求助10
19秒前
独角兽发布了新的文献求助10
20秒前
22秒前
fungii关注了科研通微信公众号
27秒前
隐形曼青应助周周没烦恼采纳,获得10
32秒前
rise完成签到 ,获得积分10
33秒前
小代发布了新的文献求助10
35秒前
枯木逢春应助Hao采纳,获得10
36秒前
36秒前
缓慢疾完成签到,获得积分10
36秒前
李健的小迷弟应助阿宁采纳,获得10
36秒前
凌风完成签到,获得积分10
38秒前
38秒前
39秒前
39秒前
xyt625发布了新的文献求助10
40秒前
40秒前
qiu完成签到,获得积分20
42秒前
颖仔关注了科研通微信公众号
43秒前
a涵完成签到,获得积分20
43秒前
温冰雪完成签到,获得积分10
44秒前
sda发布了新的文献求助10
44秒前
风和日li完成签到,获得积分0
45秒前
46秒前
chengmin发布了新的文献求助10
47秒前
情怀应助小代采纳,获得10
48秒前
所所应助sda采纳,获得10
49秒前
50秒前
缓慢疾关注了科研通微信公众号
55秒前
高分求助中
Human Cell Line Authentication: Standardization of STR Profiling Handbook 1900
Proceedings of the British Academy, Volume 41, 1955 600
Exploring Chemical Concepts Through Theory and computation 500
Atomic Collisions Eleciron & Photan Prejectiles 500
A labyrinthodont from the Lower Gondwana of Kashmir and a new edestid from the Permian of the Salt Range 500
Iwasawa Theory and Its Perspective, Volume 2 440
Defect of neuromuscular conduction associated with malignant neoplasm 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2313871
求助须知:如何正确求助?哪些是违规求助? 1982027
关于积分的说明 4979738
捐赠科研通 1753038
什么是DOI,文献DOI怎么找? 879555
版权声明 554003
科研通“疑难数据库(出版商)”最低求助积分说明 467442