Automated machine learning-based model for predicting benign anastomotic strictures in patients with rectal cancer who have received anterior resection

可解释性 机器学习 接收机工作特性 医学 随机森林 人工智能 吻合 回肠造口术 结直肠癌 外科 结直肠外科 计算机科学 癌症 腹部外科 内科学
作者
Yang Su,Yanqi Li,Wenshu Chen,Wangshuo Yang,Jichao Qin,Lu Liu
出处
期刊:Ejso [Elsevier]
卷期号:49 (12): 107113-107113 被引量:7
标识
DOI:10.1016/j.ejso.2023.107113
摘要

Background Benign anastomotic strictures (BAS) significantly impact patients' quality of life and long-term prognosis. However, the current clinical practice lacks accurate tools for predicting BAS. This study aimed to develop a machine-learning model to predict BAS in patients with rectal cancer who have undergone anterior resection. Methods Data from 1973 patients who underwent anterior resection for rectal cancer were collected. Multiple machine learning classification models were integrated to analyze the data and identify the optimal model. Model performance was evaluated using receiver operator characteristic (ROC) curves, decision curve analysis (DCA), and calibration curves. The Shapley Additive exPlanation (SHAP) algorithm was utilized to assess the impact of various clinical characteristics on the optimal model to enhance the interpretability of the model results. Results A total of 10 clinical features were considered in constructing the machine learning model. The model evaluation results indicated that the random forest (RF)model was optimal, with the area under the test set curve (AUC: 0.888, 95% CI: 0.810–0.965), accuracy: 0.792, sensitivity: 0.846, specificity: 0.791. The SHAP algorithm analysis identified prophylactic ileostomy, operative time, and anastomotic leakage as significant contributing factors influencing the predictions of the RF model. Conclusion We developed a robust machine-learning model and user-friendly online prediction tool for predicting BAS following anterior resection of rectal cancer. This tool offers a potential foundation for BAS prevention and aids clinical practice by enabling more efficient disease management and precise medical interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
JJ完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
Sesenta1完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
Fairy完成签到,获得积分10
2秒前
Rtian完成签到,获得积分10
2秒前
2秒前
3秒前
小二郎应助Yinzixin采纳,获得10
3秒前
Steven完成签到,获得积分10
3秒前
3秒前
3秒前
黄文洁发布了新的文献求助10
4秒前
超能力发布了新的文献求助10
5秒前
小二郎应助沟通亿心采纳,获得10
5秒前
5秒前
bkagyin应助LJ采纳,获得10
5秒前
6秒前
阿恒没天赋完成签到,获得积分10
6秒前
7秒前
7秒前
我是老大应助徐团团采纳,获得10
7秒前
体贴紫发布了新的文献求助10
7秒前
7秒前
lulu完成签到 ,获得积分10
7秒前
tonyguo完成签到,获得积分10
8秒前
一梦发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
Ambrum发布了新的文献求助10
8秒前
cc2064完成签到,获得积分10
8秒前
hhw完成签到,获得积分10
8秒前
ZSQ关闭了ZSQ文献求助
9秒前
wyn完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483592
求助须知:如何正确求助?哪些是违规求助? 4584269
关于积分的说明 14396042
捐赠科研通 4513982
什么是DOI,文献DOI怎么找? 2473769
邀请新用户注册赠送积分活动 1459777
关于科研通互助平台的介绍 1433192