Automated machine learning-based model for predicting benign anastomotic strictures in patients with rectal cancer who have received anterior resection

可解释性 机器学习 接收机工作特性 医学 随机森林 人工智能 吻合 回肠造口术 结直肠癌 外科 结直肠外科 计算机科学 癌症 腹部外科 内科学
作者
Yang Su,Yanqi Li,Wenshu Chen,Wangshuo Yang,Jichao Qin,Lu Liu
出处
期刊:Ejso [Elsevier]
卷期号:49 (12): 107113-107113 被引量:7
标识
DOI:10.1016/j.ejso.2023.107113
摘要

Background Benign anastomotic strictures (BAS) significantly impact patients' quality of life and long-term prognosis. However, the current clinical practice lacks accurate tools for predicting BAS. This study aimed to develop a machine-learning model to predict BAS in patients with rectal cancer who have undergone anterior resection. Methods Data from 1973 patients who underwent anterior resection for rectal cancer were collected. Multiple machine learning classification models were integrated to analyze the data and identify the optimal model. Model performance was evaluated using receiver operator characteristic (ROC) curves, decision curve analysis (DCA), and calibration curves. The Shapley Additive exPlanation (SHAP) algorithm was utilized to assess the impact of various clinical characteristics on the optimal model to enhance the interpretability of the model results. Results A total of 10 clinical features were considered in constructing the machine learning model. The model evaluation results indicated that the random forest (RF)model was optimal, with the area under the test set curve (AUC: 0.888, 95% CI: 0.810–0.965), accuracy: 0.792, sensitivity: 0.846, specificity: 0.791. The SHAP algorithm analysis identified prophylactic ileostomy, operative time, and anastomotic leakage as significant contributing factors influencing the predictions of the RF model. Conclusion We developed a robust machine-learning model and user-friendly online prediction tool for predicting BAS following anterior resection of rectal cancer. This tool offers a potential foundation for BAS prevention and aids clinical practice by enabling more efficient disease management and precise medical interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leoling完成签到,获得积分20
1秒前
1秒前
djdh发布了新的文献求助10
1秒前
2秒前
寻道图强应助夜轩岚采纳,获得30
2秒前
风中冰香应助夜轩岚采纳,获得10
2秒前
Harry应助夜轩岚采纳,获得10
2秒前
pancake发布了新的文献求助30
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
陈文娜应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
Leoling发布了新的文献求助10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
现代水卉应助科研通管家采纳,获得10
3秒前
ccm应助科研通管家采纳,获得10
3秒前
WFF应助科研通管家采纳,获得30
3秒前
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
SciGPT应助科研通管家采纳,获得50
4秒前
ccm应助科研通管家采纳,获得10
4秒前
ambrose37完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
萨尔莫斯发布了新的文献求助10
5秒前
高赛文发布了新的文献求助10
7秒前
传奇3应助科研苦行僧采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
kaka完成签到 ,获得积分10
9秒前
打打应助凣凢采纳,获得10
9秒前
Lzy的羊完成签到,获得积分10
10秒前
zw发布了新的文献求助10
10秒前
Ally发布了新的文献求助10
12秒前
科研通AI6应助受伤的碧曼采纳,获得10
12秒前
13秒前
ZJING9完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536933
求助须知:如何正确求助?哪些是违规求助? 4624592
关于积分的说明 14592446
捐赠科研通 4565023
什么是DOI,文献DOI怎么找? 2502125
邀请新用户注册赠送积分活动 1480875
关于科研通互助平台的介绍 1452098