Convolution Neural Network-Assisted Smart Fluorescent-Tongue Based on Lanthanide Ion-Induced Forming MOF/HOF Composite for Differentiation of Flavor Compounds and Wine Identification

风味 葡萄酒 单宁酸 荧光 电子舌 化学 卷积神经网络 材料科学 食品科学 计算机科学 品味 有机化学 人工智能 物理 量子力学
作者
Zishuo Zhang,Bing Yan
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:8 (9): 3585-3594 被引量:35
标识
DOI:10.1021/acssensors.3c01273
摘要

Wine flavor is a vital quality characteristic in wine, influenced by those flavor components with low sensory thresholds. It is crucial to recognize and classify the wine components related to their flavor contribution. The integration of fluorescent sensors and artificial intelligence shows huge potential in flavor recognition by emulation of the gustatory perception system. Meanwhile, achieving information identification of wine based on multiple information barcodes has hopeful applications in anticounterfeiting. In this study, we present a simple method in which organic linkers are weaved into a hydrogen-bonded organic framework (HOF) for the available transformation of a metal-bonded organic framework (MOF) induced by lanthanide ions (Ln3+). The fluorescent Ln-MOF/HOF composite exhibits high sensitivity, rapid response, and good recyclability for detecting seven flavor compounds in wine, including tannic acid, ionone, vanillin, anethole, anisaldehyde, hydroxybenzaldehyde, and 4-hydroxy-2-methylacetophenone. Depending on its satisfactory detectability, a novel strategy is provided in which a fluorescent sensor is able to function as a smart fluorescent-tongue (F-tongue) by the aid of convolutional neural network to differentiate these seven flavor compounds. In addition, the Ln-MOF/HOF composite has been used to prepare multiple information barcodes for wine information identification on the basis of dynamic fluorescence response toward tannic acid. The mimetic gustatory perception system developed in this study may offer a promising strategy for flavor recognition in food and further food anticounterfeiting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
ZQL完成签到,获得积分10
3秒前
4秒前
烟花应助小古采纳,获得10
4秒前
5秒前
6秒前
6秒前
6秒前
壮观的夏云完成签到,获得积分10
6秒前
蟹壳就要硬完成签到,获得积分20
7秒前
9秒前
9秒前
10秒前
科研通AI6应助pb采纳,获得10
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
庾摇伽完成签到 ,获得积分10
14秒前
大力的飞莲完成签到,获得积分10
14秒前
想有所成发布了新的文献求助10
16秒前
小古发布了新的文献求助10
18秒前
yu发布了新的文献求助10
19秒前
20秒前
21秒前
CipherSage应助老实的珊珊采纳,获得10
22秒前
紧张的以山完成签到,获得积分10
22秒前
YY完成签到,获得积分10
24秒前
两直线发布了新的文献求助10
24秒前
李煜源发布了新的文献求助10
24秒前
清秀的不言完成签到 ,获得积分10
26秒前
26秒前
27秒前
活力的寻云完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
yu完成签到,获得积分20
29秒前
YifanWang应助ichigo采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4970743
求助须知:如何正确求助?哪些是违规求助? 4227225
关于积分的说明 13166011
捐赠科研通 4015195
什么是DOI,文献DOI怎么找? 2197173
邀请新用户注册赠送积分活动 1210098
关于科研通互助平台的介绍 1124497