TD-YOLOA: An Efficient YOLO Network with Attention Mechanism for Tire Defect Detection

计算机科学 特征提取 块(置换群论) 人工智能 合并(版本控制) 卷积(计算机科学) 卷积神经网络 模式识别(心理学) 骨干网 目标检测 特征(语言学) 棱锥(几何) 数据挖掘 计算机视觉 实时计算 人工神经网络 数学 计算机网络 语言学 哲学 几何学 情报检索
作者
Chen Peng,Xiaoyu Li,Yu‐Long Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:3
标识
DOI:10.1109/tim.2023.3312753
摘要

Tire quality is crucial for vehicle safety, and thus delivery inspection is necessary. However, detecting internal tire defects from X-ray images is still a challenging task due to its complex texture background, diverse types of defects, small defect areas and so on, which make it difficult for existing methods to achieve high accuracy and real-time performance simultaneously. In this article, a novel tire detection approach is proposed to address these problems by integrating the advantages of improved yolo network and attention mechanism (TD-YOLOA). In particular, i) an efficient layer aggregation network (ELAN) backbone structure is proposed to improve the ability of model detection for feature extraction, where grouped convolution is applied to enhance the information interaction and reduce computational complexity; ii) a spatial pyramid pooling with cross stage partial convolution (SPPCSPC) is adopted to improve the efficiency of feature fusion, where the SPP module is retained for enlarging receptive field and CSPC is designed to merge features from different operations; and iii) a convolutional block attention module (CBAM) is introduced to improve the detection accuracy of small tire defects, which combines channel and spatial attention. Finally, the experimental results on a tire common defects dataset have demonstrated the superiority of the proposed TD-YOLOA method over other methods, achieving a 91.3% mAP and 9.28 ms for a tire sub-image, which is 0.5% and 0.65ms better. And the actual industrial application verifies the effectiveness of proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助ssz采纳,获得20
1秒前
君君发布了新的文献求助30
1秒前
2秒前
gwf971021完成签到,获得积分10
3秒前
3秒前
3秒前
詹雅智发布了新的文献求助10
3秒前
无限草丛完成签到,获得积分10
4秒前
4秒前
zhenliu发布了新的文献求助10
4秒前
小马甲应助惜筠采纳,获得10
4秒前
5秒前
年轻的青柏完成签到,获得积分20
6秒前
6秒前
JiangSir完成签到,获得积分10
6秒前
123发布了新的文献求助10
6秒前
崔崔完成签到,获得积分10
6秒前
醒不来的猫完成签到,获得积分10
7秒前
7秒前
小怪完成签到,获得积分20
7秒前
可爱菠萝完成签到 ,获得积分10
8秒前
渣渣凡完成签到,获得积分10
9秒前
旺旺发布了新的文献求助10
9秒前
七七完成签到,获得积分10
9秒前
科研小陈完成签到,获得积分10
10秒前
受伤芝麻完成签到,获得积分10
10秒前
大个应助hu采纳,获得20
10秒前
万能图书馆应助cqyyy采纳,获得30
10秒前
dzy完成签到,获得积分10
10秒前
5251发布了新的文献求助10
11秒前
刘唐荣完成签到,获得积分10
12秒前
科研欣路完成签到,获得积分10
12秒前
tengyve完成签到,获得积分10
12秒前
广州小肥羊完成签到 ,获得积分10
12秒前
科研通AI5应助活泼啤酒采纳,获得30
13秒前
Bryce完成签到,获得积分10
14秒前
bing完成签到,获得积分10
15秒前
温暖的涵易完成签到,获得积分0
15秒前
16秒前
坚强觅珍完成签到 ,获得积分10
17秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The duality of human existence: Isolation and communion in Western man 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827652
求助须知:如何正确求助?哪些是违规求助? 3369926
关于积分的说明 10459175
捐赠科研通 3089695
什么是DOI,文献DOI怎么找? 1700010
邀请新用户注册赠送积分活动 817613
科研通“疑难数据库(出版商)”最低求助积分说明 770301