Boundary uncertainty aware network for automated polyp segmentation

计算机科学 分割 人工智能 棱锥(几何) 编码器 边界(拓扑) 修补 特征(语言学) 深度学习 人工神经网络 计算机视觉 图像分割 模式识别(心理学) 图像(数学) 数学 数学分析 语言学 哲学 几何学 操作系统
作者
Guanghui Yue,Guibin Zhuo,Weiqing Yan,Tianwei Zhou,Chang Tang,Peng Yang,Tianfu Wang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:170: 390-404 被引量:18
标识
DOI:10.1016/j.neunet.2023.11.050
摘要

Recently, leveraging deep neural networks for automated colorectal polyp segmentation has emerged as a hot topic due to the favored advantages in evading the limitations of visual inspection, e.g., overwork and subjectivity. However, most existing methods do not pay enough attention to the uncertain areas of colonoscopy images and often provide unsatisfactory segmentation performance. In this paper, we propose a novel boundary uncertainty aware network (BUNet) for precise and robust colorectal polyp segmentation. Specifically, considering that polyps vary greatly in size and shape, we first adopt a pyramid vision transformer encoder to learn multi-scale feature representations. Then, a simple yet effective boundary exploration module (BEM) is proposed to explore boundary cues from the low-level features. To make the network focus on the ambiguous area where the prediction score is biased to neither the foreground nor the background, we further introduce a boundary uncertainty aware module (BUM) that explores error-prone regions from the high-level features with the assistance of boundary cues provided by the BEM. Through the top-down hybrid deep supervision, our BUNet implements coarse-to-fine polyp segmentation and finally localizes polyp regions precisely. Extensive experiments on five public datasets show that BUNet is superior to thirteen competing methods in terms of both effectiveness and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爱笑的觅双完成签到,获得积分10
2秒前
冰魂应助七七爱学习采纳,获得30
3秒前
3秒前
3秒前
富贵儿完成签到 ,获得积分10
4秒前
李健应助听雨采纳,获得10
4秒前
4秒前
顾矜应助小鹿采纳,获得10
5秒前
6秒前
joey发布了新的文献求助10
6秒前
gffh完成签到,获得积分10
6秒前
111发布了新的文献求助10
8秒前
Jasper应助Bin_Liu采纳,获得10
8秒前
10秒前
伍六柒发布了新的文献求助10
10秒前
11秒前
11秒前
今后应助鞠俊哲采纳,获得10
11秒前
吴未完成签到,获得积分10
12秒前
贪玩的幻姬完成签到 ,获得积分10
12秒前
12秒前
deng203发布了新的文献求助10
13秒前
小马甲应助lruri张采纳,获得10
14秒前
在水一方应助LT采纳,获得10
15秒前
谦让乐曲发布了新的文献求助10
15秒前
碗碗完成签到,获得积分10
15秒前
暮寻屿苗完成签到 ,获得积分10
16秒前
半城烟火完成签到 ,获得积分10
16秒前
user完成签到,获得积分10
16秒前
16秒前
18秒前
烟花应助科研通管家采纳,获得10
19秒前
CWNU_HAN应助科研通管家采纳,获得30
19秒前
19秒前
科研通AI5应助科研通管家采纳,获得50
19秒前
Hello应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801337
求助须知:如何正确求助?哪些是违规求助? 3346984
关于积分的说明 10331247
捐赠科研通 3063265
什么是DOI,文献DOI怎么找? 1681476
邀请新用户注册赠送积分活动 807612
科研通“疑难数据库(出版商)”最低求助积分说明 763790