JoVE Video Dataset

计算机科学 人工智能
标识
DOI:10.3791/66314-v
摘要

Many protein-protein interactions involve the binding of short protein segments to peptide-binding domains. Usually, such interactions require the recognition of linear motifs with variable conservation. The combination of highly conserved and more variable regions in the same ligands often contributes to the multispecificity of binding, a common property of enzymes and cell signaling proteins. Characterization of amino acid preferences of peptide-binding domains is important for the design of mediators of protein-protein interactions (PPIs). Computational methods are an efficient alternative to the often costly and cumbersome experimental techniques, enabling the design of potential mediators that can be later validated in downstream experiments. Here, we described a methodology using the Pepspec application of the Rosetta molecular modeling package to predict the amino acid preferences of peptide-binding domains. This methodology is useful when the structure of the receptor protein and the nature of the peptide ligand are both known or can be inferred. The methodology starts with a well-characterized anchor from the ligand, which is extended by randomly adding amino acid residues. The binding affinity of peptides generated this way is then evaluated by flexible-backbone peptide docking in order to select the peptides with the best predicted binding scores. These peptides are then used to calculate amino acid preferences and to optionally compute a position-weight matrix (PWM) that can be used in further studies. To illustrate the application of this methodology, we used the interaction between subunits of human interferon regulatory factor 5 (IRF5), previously known to be multispecific but globally guided by a short conserved motif called pLxIS. The estimated amino acid preferences were consistent with previous knowledge about the IRF5 binding surface. Positions occupied by phosphorylatable serine residues exhibited a high frequency of aspartate and glutamate, likely because their negatively charged side chains are similar to phosphoserine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
机智的紫丝完成签到,获得积分10
3秒前
4秒前
5秒前
jiahao完成签到,获得积分10
5秒前
6秒前
Kim_发布了新的文献求助10
6秒前
和谐断天完成签到,获得积分20
8秒前
Ava应助张雨采纳,获得10
8秒前
9秒前
甜美香之完成签到 ,获得积分10
10秒前
10秒前
木子李发布了新的文献求助10
11秒前
及禾完成签到,获得积分10
13秒前
英姑应助min采纳,获得10
14秒前
徐佳达完成签到,获得积分10
14秒前
zzz发布了新的文献求助10
17秒前
loulan完成签到,获得积分10
17秒前
perovskite完成签到,获得积分10
19秒前
JamesPei应助太阳采纳,获得10
21秒前
ylq完成签到,获得积分20
23秒前
盼盼陨石完成签到,获得积分10
24秒前
24秒前
27秒前
28秒前
调皮从筠发布了新的文献求助10
28秒前
张雨完成签到,获得积分10
31秒前
32秒前
34秒前
张雨发布了新的文献求助10
35秒前
和谐白云完成签到,获得积分10
35秒前
开心的小熊猫完成签到,获得积分10
36秒前
舒昀完成签到,获得积分10
37秒前
默默的无敌完成签到,获得积分10
39秒前
止戈发布了新的文献求助10
39秒前
zxh123发布了新的文献求助10
39秒前
yellow完成签到 ,获得积分10
40秒前
洋洋洋完成签到,获得积分10
41秒前
小田完成签到 ,获得积分10
42秒前
53秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4107713
求助须知:如何正确求助?哪些是违规求助? 3645665
关于积分的说明 11548641
捐赠科研通 3352068
什么是DOI,文献DOI怎么找? 1841749
邀请新用户注册赠送积分活动 908297
科研通“疑难数据库(出版商)”最低求助积分说明 825409