RANGO: A Novel Deep Learning Approach to Detect Drones Disguising from Video Surveillance Systems

无人机 计算机科学 人工智能 计算机视觉 计算机安全 生物 遗传学
作者
Jin Han,Yun-Feng Ren,Alessandro Brighente,Mauro Conti
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:15 (2): 1-21 被引量:4
标识
DOI:10.1145/3641282
摘要

Video surveillance systems provide means to detect the presence of potentially malicious drones in the surroundings of critical infrastructures. In particular, these systems collect images and feed them to a deep-learning classifier able to detect the presence of a drone in the input image. However, current classifiers are not efficient in identifying drones that disguise themselves with the image background, e.g., hiding in front of a tree. Furthermore, video-based detection systems heavily rely on the image’s brightness, where darkness imposes significant challenges in detecting drones. Both these phenomena increase the possibilities for attackers to get close to critical infrastructures without being spotted and hence be able to gather sensitive information or cause physical damages, possibly leading to safety threats. In this article, we propose RANGO, a drone detection arithmetic able to detect drones in challenging images where the target is difficult to distinguish from the background. RANGO is based on a deep learning architecture that exploits a Preconditioning Operation (PREP) that highlights the target by the difference between the target gradient and the background gradient. The idea is to highlight features that will be useful for classification. After PREP, RANGO uses multiple convolution kernels to make the final decision on the presence of the drone. We test RANGO on a drone image dataset composed of multiple already-existing datasets to which we add samples of birds and planes. We then compare RANGO with multiple currently existing approaches to show its superiority. When tested on images with disguising drones, RANGO attains an increase of 6.6% mean Average Precision (mAP) compared to YOLOv5 solution. When tested on the conventional dataset, RANGO improves the mAP by approximately 2.2%, thus confirming its effectiveness also in the general scenario.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉的迎海完成签到,获得积分20
刚刚
Burke完成签到 ,获得积分10
刚刚
Pothos完成签到,获得积分10
1秒前
果果完成签到,获得积分10
2秒前
2秒前
未末木完成签到,获得积分10
2秒前
2秒前
阳仔完成签到 ,获得积分10
2秒前
Khr1stINK完成签到,获得积分10
3秒前
整齐百褶裙完成签到 ,获得积分10
3秒前
3秒前
3秒前
yangyangyang完成签到,获得积分10
4秒前
4秒前
哈哈哈发布了新的文献求助10
4秒前
充电宝应助江湖笑采纳,获得10
5秒前
曾曾完成签到,获得积分10
5秒前
清脆从蓉发布了新的文献求助10
6秒前
ZZ完成签到,获得积分10
6秒前
DEAMSTY发布了新的文献求助10
7秒前
时尚飞阳完成签到,获得积分10
7秒前
谦让碧菡发布了新的文献求助10
7秒前
辛某发布了新的文献求助10
8秒前
8秒前
在水一方应助kaiqiang采纳,获得10
8秒前
xiaowang完成签到,获得积分10
9秒前
充电宝应助个性问寒采纳,获得10
9秒前
ww完成签到 ,获得积分10
9秒前
10秒前
飘逸的清涟完成签到,获得积分10
10秒前
CodeCraft应助Zyan采纳,获得10
10秒前
顾勇完成签到,获得积分0
11秒前
上官若男应助小刘采纳,获得10
11秒前
彭于晏应助柯续缘采纳,获得10
11秒前
zql74785应助G浅浅采纳,获得10
11秒前
花火易逝完成签到,获得积分10
11秒前
12秒前
12秒前
隐形白开水完成签到,获得积分10
12秒前
peng完成签到,获得积分10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834256
求助须知:如何正确求助?哪些是违规求助? 3376847
关于积分的说明 10495379
捐赠科研通 3096271
什么是DOI,文献DOI怎么找? 1704904
邀请新用户注册赠送积分活动 820296
科研通“疑难数据库(出版商)”最低求助积分说明 771940