Multifunctional robot based on multimodal brain-machine interface

计算机科学 脑-机接口 接口(物质) 机器人 陀螺仪 机械臂 特征提取 人工智能 加速度计 支持向量机 特征(语言学) 计算机视觉 模式识别(心理学) 心理学 操作系统 脑电图 工程类 并行计算 航空航天工程 精神科 哲学 语言学 最大气泡压力法 气泡
作者
Nianming Ban,Shanghong Xie,Chao Qu,Xuening Chen,Jiahui Pan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:91: 106063-106063 被引量:1
标识
DOI:10.1016/j.bspc.2024.106063
摘要

To address the issues of low control accuracy, insufficient command quantity, and limited machine functionality in brain-machine interfaces (BMIs), we propose a multifunctional robot control system based on a multimodal BMI that fuses three different modalities of signals: SSVEP, EOG, and gyroscope. The system enables control of the robot to perform ten actions, including moving forward, turning left, turning right, stopping, gripping, lifting and lowering the left arm, clockwise and counterclockwise rotation of the left arm elbow and searching and grabbing the ball. Additionally, a new SSVEP paradigm with a two-level menu is designed to allow subjects to switch between different control menus by double blinking, providing sufficient commands with fewer stimulation blocks. In the SSVEP classification experiment, we propose a CNN-BiLSTM network based on the attention module (ACB-Net), which can make the network automatically weight according to the importance of the EEG signals of different channels, resulting in better feature extraction. To demonstrate the superiority of our model, we conducted classification experiments on a public dataset and self-collected dataset with six other SSVEP classification methods, and our model achieved the highest accuracy. In the online experiment, all 16 subjects completed complex tasks, with an average accuracy rate of 93.78% and an average ITR of 93.75 bit/min. Furthermore, we enhanced the robot's functionality by adding visual capabilities, making the control more intelligent. Overall, our proposed system demonstrates precise control over the Nao robot and holds significant potential for applications in both the medical and robotics control domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzyin完成签到,获得积分10
刚刚
刚刚
坦率的匪应助pppppp采纳,获得10
刚刚
幽默的醉冬完成签到,获得积分10
刚刚
赫连烙发布了新的文献求助10
1秒前
xdx完成签到,获得积分10
1秒前
石头完成签到 ,获得积分10
1秒前
春眠不觉小小酥完成签到,获得积分10
2秒前
luchunze完成签到,获得积分10
2秒前
hsh完成签到,获得积分10
3秒前
彭于晏应助妮妮采纳,获得10
3秒前
张国柱发布了新的文献求助10
3秒前
传奇3应助betty2009采纳,获得10
4秒前
顾矜应助yyds2222采纳,获得10
4秒前
5秒前
今年orz应助科研通管家采纳,获得10
5秒前
YY本Y应助科研通管家采纳,获得20
5秒前
华仔应助科研通管家采纳,获得10
5秒前
te完成签到,获得积分10
5秒前
5秒前
情怀应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
九九完成签到,获得积分10
5秒前
搜集达人应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
小橙子应助科研通管家采纳,获得10
6秒前
fd163c应助科研通管家采纳,获得10
6秒前
6秒前
Bio应助科研通管家采纳,获得50
6秒前
111完成签到,获得积分20
6秒前
Orange应助科研通管家采纳,获得30
6秒前
fd163c应助科研通管家采纳,获得10
6秒前
弹指一挥间完成签到,获得积分10
7秒前
Eleven应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
无花果应助赫连烙采纳,获得10
7秒前
8秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4062170
求助须知:如何正确求助?哪些是违规求助? 3600822
关于积分的说明 11435624
捐赠科研通 3324148
什么是DOI,文献DOI怎么找? 1827611
邀请新用户注册赠送积分活动 898081
科研通“疑难数据库(出版商)”最低求助积分说明 818877