AS-NeSt: A Novel 3D Deep Learning Model for Radiation Therapy Dose Distribution Prediction in Esophageal Cancer Treatment With Multiple Prescriptions

药方 放射治疗 食管癌 分布(数学) 医学 癌症 肿瘤科 医学物理学 内科学 药理学 数学 数学分析
作者
Yanhua Duan,Jiyong Wang,P. J. Wu,Yan Shao,Hua Chen,Hao Wang,Hongbin Cao,Hengle Gu,Aihui Feng,Ying Huang,Zhenjiong Shen,Yang Lin,Qing Kong,Jun Liu,Hongxuan Li,Xiaolong Fu,Zhangru Yang,Xu‐Wei Cai,Zhiyong Xu
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:119 (3): 978-989 被引量:9
标识
DOI:10.1016/j.ijrobp.2023.12.001
摘要

Purpose : Implementing artificial intelligence (AI) technologies allows for the accurate prediction of radiotherapy dose distributions, enhancing treatment planning efficiency. However, esophageal cancers present unique challenges due to tumor complexity and diverse prescription types. Additionally, limited data availability hampers the effectiveness of existing AI models. This study developed a deep learning model, trained on a diverse dataset of esophageal cancer prescriptions, to improve dose prediction accuracy. Methods and Materials : We retrospectively collected data from 530 esophageal cancer patients, including single-target and simultaneous integrated boost (SIB) prescriptions, for model building. The proposed Asymmetric ResNeSt (AS-NeSt) model features novel 3D ResNeSt blocks and an asymmetric architecture. We constructed a loss function targeting global and local doses and validated the model's performance against existing alternatives. Model assisted experiments were used to validate its clinical benefits. Results : The AS-NeSt model maintained an absolute prediction error below 5% for each dosimetric metric. The average dice similarity coefficient (DSC) for isodose volumes was 0.93. The model achieved an average relative prediction error of 2.02%, statistically lower than HD-Unet (4.17%), DoseNet (2.35%), and DCNN (3.65%). It also demonstrated significantly fewer parameters and shorter prediction times. Clinically, the AS-NeSt model raised physicians' ability to accurately pre-assess appropriate treatment methods before planning from 95.24% to 100%, reduced planning time by over 61% for junior dosimetrists and 52% for senior dosimetrists, and decreased both inter- and intra-dosimetrist discrepancies by more than 50%. Conclusion : The AS-NeSt model, developed with innovative 3D ResNeSt blocks and an asymmetric encoder-decoder structure, has been validated using clinical esophageal cancer patient data. It accurately predicts 3D dose distributions for various prescriptions, including SIB, showing potential to improve the management of esophageal cancer treatment in a clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Even_YE发布了新的文献求助10
刚刚
Sky完成签到,获得积分10
刚刚
永野芽郁完成签到,获得积分10
刚刚
1秒前
zhoushishan完成签到,获得积分10
1秒前
1秒前
小蘑菇应助某某采纳,获得10
1秒前
淡然的奎完成签到,获得积分10
1秒前
2秒前
wangqing发布了新的文献求助10
2秒前
2秒前
热心网友完成签到,获得积分10
2秒前
Ava应助叁壹粑粑采纳,获得20
2秒前
烟花应助123采纳,获得10
2秒前
3秒前
nana完成签到,获得积分10
3秒前
科研通AI6应助小王好饿采纳,获得10
4秒前
vonfenson发布了新的文献求助10
4秒前
一颗烂番茄完成签到 ,获得积分10
4秒前
彭于彦祖举报Gauss求助涉嫌违规
4秒前
4秒前
小橘子发布了新的文献求助10
5秒前
鱼刺鱼刺卡完成签到,获得积分10
5秒前
ceeray23发布了新的文献求助20
5秒前
西瓜完成签到 ,获得积分10
5秒前
科研通AI2S应助ZsJJkk采纳,获得20
5秒前
苗惜霜发布了新的文献求助30
6秒前
迅速的仰完成签到,获得积分10
6秒前
孔问筠完成签到,获得积分0
6秒前
123456yyds发布了新的文献求助10
7秒前
zhongying完成签到 ,获得积分10
7秒前
汉堡完成签到,获得积分20
7秒前
7秒前
7秒前
Gstar完成签到,获得积分10
7秒前
奕青完成签到,获得积分10
8秒前
电磁鳄完成签到,获得积分10
8秒前
科研通AI6应助sas采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
科研大大完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433106
求助须知:如何正确求助?哪些是违规求助? 4545586
关于积分的说明 14196900
捐赠科研通 4465099
什么是DOI,文献DOI怎么找? 2447440
邀请新用户注册赠送积分活动 1438647
关于科研通互助平台的介绍 1415645