可解释性
生成语法
排放交易
计算机科学
人工智能
布伦特原油
计量经济学
变压器
碳价格
深度学习
津贴(工程)
机器学习
经济
气候变化
工程类
波动性(金融)
运营管理
生态学
电压
电气工程
生物
作者
Dinggao Liu,Kaijie Chen,Yi Cai,Zhenpeng Tang
标识
DOI:10.1016/j.frl.2024.105038
摘要
This paper proposes an interpretable deep learning forecasting method based on generative data augmentation for carbon allowance prices in the EU Emissions Trading System (ETS) Phase 4. Utilizing TimeGAN, we generate near-real expanded data to enhance training sets. Temporal Fusion Transformer (TFT) is used to quantify the contribution of impact factors. The results show that the augmentation effectively improved the prediction accuracy. Interpretability reveal that Brent crude oil, NBP natural gas, and Rotterdam coal are the top three contributors. Our findings offer a strong approach for the new phase price forecasting, helping market participants and policymakers in informed decision-making.
科研通智能强力驱动
Strongly Powered by AbleSci AI