AI-Derived Blood Biomarkers for Ovarian Cancer Diagnosis: Systematic Review and Meta-Analysis

医学 荟萃分析 科克伦图书馆 内科学 曲线下面积 梅德林 肿瘤科 政治学 法学
作者
Haishan Xu,Xiao-Ying Li,Ming-Qian Jia,Qi-Peng Ma,Y. Zhang,Fang-Hua Liu,Ying Qin,Yu-Han Chen,Yu Li,Xi-Yang Chen,Yi-Lin Xu,Dong-Run Li,Dong-Dong Wang,Donghui Huang,Qian Xiao,Yuhong Zhao,Song Gao,Xue Qin,Tao Tao,Ting‐Ting Gong
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e67922-e67922 被引量:6
标识
DOI:10.2196/67922
摘要

Background Emerging evidence underscores the potential application of artificial intelligence (AI) in discovering noninvasive blood biomarkers. However, the diagnostic value of AI-derived blood biomarkers for ovarian cancer (OC) remains inconsistent. Objective We aimed to evaluate the research quality and the validity of AI-based blood biomarkers in OC diagnosis. Methods A systematic search was performed in the MEDLINE, Embase, IEEE Xplore, PubMed, Web of Science, and the Cochrane Library databases. Studies examining the diagnostic accuracy of AI in discovering OC blood biomarkers were identified. The risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies–AI tool. Pooled sensitivity, specificity, and area under the curve (AUC) were estimated using a bivariate model for the diagnostic meta-analysis. Results A total of 40 studies were ultimately included. Most (n=31, 78%) included studies were evaluated as low risk of bias. Overall, the pooled sensitivity, specificity, and AUC were 85% (95% CI 83%-87%), 91% (95% CI 90%-92%), and 0.95 (95% CI 0.92-0.96), respectively. For contingency tables with the highest accuracy, the pooled sensitivity, specificity, and AUC were 95% (95% CI 90%-97%), 97% (95% CI 95%-98%), and 0.99 (95% CI 0.98-1.00), respectively. Stratification by AI algorithms revealed higher sensitivity and specificity in studies using machine learning (sensitivity=85% and specificity=92%) compared to those using deep learning (sensitivity=77% and specificity=85%). In addition, studies using serum reported substantially higher sensitivity (94%) and specificity (96%) than those using plasma (sensitivity=83% and specificity=91%). Stratification by external validation demonstrated significantly higher specificity in studies with external validation (specificity=94%) compared to those without external validation (specificity=89%), while the reverse was observed for sensitivity (74% vs 90%). No publication bias was detected in this meta-analysis. Conclusions AI algorithms demonstrate satisfactory performance in the diagnosis of OC using blood biomarkers and are anticipated to become an effective diagnostic modality in the future, potentially avoiding unnecessary surgeries. Future research is warranted to incorporate external validation into AI diagnostic models, as well as to prioritize the adoption of deep learning methodologies. Trial Registration PROSPERO CRD42023481232; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023481232
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
X欣完成签到,获得积分10
1秒前
阿锋完成签到 ,获得积分10
1秒前
Tian111完成签到,获得积分10
1秒前
2秒前
2秒前
4秒前
5秒前
小马甲应助luokm采纳,获得10
5秒前
5秒前
搜集达人应助法郎采纳,获得10
6秒前
南风完成签到,获得积分10
6秒前
科研通AI6应助queer采纳,获得10
6秒前
香蕉诗蕊应助SC采纳,获得30
7秒前
谦让小馒头应助谦让滑板采纳,获得10
7秒前
waiting发布了新的文献求助10
7秒前
7秒前
H1lb2rt发布了新的文献求助10
8秒前
Celia完成签到,获得积分10
9秒前
研友_VZG7GZ应助上善若水采纳,获得10
9秒前
安静无招发布了新的文献求助10
10秒前
10秒前
10秒前
彼岸发布了新的文献求助30
10秒前
11秒前
11秒前
顾矜应助醉熏的宛筠采纳,获得10
12秒前
12秒前
能干的自中完成签到,获得积分20
13秒前
量子星尘发布了新的文献求助10
14秒前
111发布了新的文献求助60
16秒前
16秒前
16秒前
啊薇儿发布了新的文献求助20
16秒前
小刘完成签到,获得积分10
17秒前
17秒前
憨豆完成签到,获得积分10
18秒前
今夕何夕完成签到,获得积分10
19秒前
LYX发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536258
求助须知:如何正确求助?哪些是违规求助? 4623988
关于积分的说明 14590229
捐赠科研通 4564430
什么是DOI,文献DOI怎么找? 2501723
邀请新用户注册赠送积分活动 1480520
关于科研通互助平台的介绍 1451794