Explainable Machine Learning Model for Predicting Persistent Sepsis-Associated Acute Kidney Injury: Development and Validation Study (Preprint)

预印本 败血症 急性肾损伤 医学 计算机科学 内科学 万维网
作者
Wei Jiang,Yueyue Zhang,Jiayi Weng,Lin Song,Shili Liu,Xianghui Li,Shiqi Xu,Keran Shi,Luanluan Li,Chuanqing Zhang,Jing Wang,Quan Yuan,Yongwei Zhang,Jun Shao,Jiangquan Yu,Ruiqiang Zheng
标识
DOI:10.2196/preprints.62932
摘要

BACKGROUND Persistent sepsis-associated acute kidney injury (SA-AKI) shows poor clinical outcomes and remains a therapeutic challenge for clinicians. Early identification and prediction of persistent SA-AKI are crucial. OBJECTIVE The aim of this study was to develop and validate an interpretable machine learning (ML) model that predicts persistent SA-AKI and to compare its diagnostic performance with that of C-C motif chemokine ligand 14 (CCL14) in a prospective cohort. METHODS The study used 4 retrospective cohorts and 1 prospective cohort for model derivation and validation. The derivation cohort used the MIMIC-IV database, which was randomly split into 2 parts (80% for model construction and 20% for internal validation). External validation was conducted using subsets of the MIMIC-III dataset and e-ICU dataset, and retrospective cohorts from the intensive care unit (ICU) of Northern Jiangsu People’s Hospital. Prospective data from the same ICU were used for validation and comparison with urinary CCL14 biomarker measurements. Acute kidney injury (AKI) was defined based on serum creatinine and urine output, using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria. Routine clinical data within the first 24 hours of ICU admission were collected, and 8 ML algorithms were used to construct the prediction model. Multiple evaluation metrics, including area under the receiver operating characteristic curve (AUC), were used to compare predictive performance. Feature importance was ranked using Shapley Additive Explanations (SHAP), and the final model was explained accordingly. In addition, the model was developed into a web-based application using the Streamlit framework to facilitate its clinical application. RESULTS A total of 46,097 patients with sepsis from multiple cohorts were enrolled for analysis. Among 17,928 patients with sepsis in the derivation cohort, 8081 patients (45.1%) showed progression to persistent SA-AKI. Among the 8 ML models, the gradient boosting machine (GBM) model demonstrated superior discriminative ability. Following feature importance ranking, a final interpretable GBM model comprising 12 features (AKI stage, ΔCreatinine, urine output, furosemide dose, BMI, Sequential Organ Failure Assessment score, kidney replacement therapy, mechanical ventilation, lactate, blood urea nitrogen, prothrombin time, and age) was established. The final model accurately predicted the occurrence of persistent SA-AKI in both internal (AUC=0.870) and external validation cohorts (MIMIC-III subset: AUC=0.891; e-ICU dataset: AUC=0.932; Northern Jiangsu People’s Hospital retrospective cohort: AUC=0.983). In the prospective cohort, the GBM model outperformed urinary CCL14 in predicting persistent SA-AKI (GBM AUC=0.852 vs CCL14 AUC=0.821). The model has been transformed into an online clinical tool to facilitate its application in clinical settings. CONCLUSIONS The interpretable GBM model was shown to successfully and accurately predict the occurrence of persistent SA-AKI, demonstrating good predictive ability in both internal and external validation cohorts. Furthermore, the model was demonstrated to outperform the biomarker CCL14 in prospective cohort validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Ryan完成签到,获得积分0
2秒前
大好人完成签到 ,获得积分10
3秒前
dejavu完成签到,获得积分10
3秒前
onevip完成签到,获得积分0
5秒前
6秒前
谨慎思柔发布了新的文献求助10
8秒前
张张完成签到 ,获得积分10
9秒前
自信的访云完成签到,获得积分10
12秒前
小粒橙完成签到 ,获得积分10
19秒前
发发完成签到,获得积分10
20秒前
21秒前
执着的以筠完成签到 ,获得积分10
24秒前
激动的xx完成签到 ,获得积分10
25秒前
Orange应助谨慎思柔采纳,获得10
30秒前
重回地球完成签到,获得积分10
31秒前
ARIA完成签到 ,获得积分10
31秒前
天天快乐应助独孤磕盐采纳,获得10
31秒前
33秒前
微笑的小霸王完成签到,获得积分10
33秒前
nkuhao完成签到,获得积分10
38秒前
独孤磕盐完成签到,获得积分20
40秒前
42秒前
42秒前
爆米花应助科研通管家采纳,获得20
42秒前
独孤磕盐发布了新的文献求助10
46秒前
gao完成签到 ,获得积分10
47秒前
陈少华完成签到 ,获得积分10
47秒前
高高从霜完成签到 ,获得积分10
49秒前
XDF完成签到 ,获得积分10
49秒前
愉快的小蘑菇完成签到,获得积分10
56秒前
yyy完成签到 ,获得积分10
56秒前
青檬完成签到 ,获得积分10
57秒前
ZZzz完成签到 ,获得积分10
58秒前
欧阳发布了新的文献求助10
1分钟前
zhuxd完成签到 ,获得积分10
1分钟前
poplin完成签到 ,获得积分10
1分钟前
车厘子完成签到 ,获得积分10
1分钟前
ambrose37完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315228
求助须知:如何正确求助?哪些是违规求助? 4457895
关于积分的说明 13868427
捐赠科研通 4347429
什么是DOI,文献DOI怎么找? 2387784
邀请新用户注册赠送积分活动 1381894
关于科研通互助平台的介绍 1351159