Explainable Machine Learning Model for Predicting Persistent Sepsis-Associated Acute Kidney Injury: Development and Validation Study (Preprint)

预印本 败血症 急性肾损伤 医学 计算机科学 内科学 万维网
作者
Wei Jiang,Yueyue Zhang,Jiayi Weng,Lin Song,Shili Liu,X. Li,Shiqi Xu,Keran Shi,Luanluan Li,Chuanqing Zhang,Jing Wang,Quan Yuan,Yongwei Zhang,Jun Shao,Jiangquan Yu,Ruiqiang Zheng
标识
DOI:10.2196/preprints.62932
摘要

BACKGROUND Persistent sepsis-associated acute kidney injury (SA-AKI) shows poor clinical outcomes and remains a therapeutic challenge for clinicians. Early identification and prediction of persistent SA-AKI are crucial. OBJECTIVE The aim of this study was to develop and validate an interpretable machine learning (ML) model that predicts persistent SA-AKI and to compare its diagnostic performance with that of C-C motif chemokine ligand 14 (CCL14) in a prospective cohort. METHODS The study used 4 retrospective cohorts and 1 prospective cohort for model derivation and validation. The derivation cohort used the MIMIC-IV database, which was randomly split into 2 parts (80% for model construction and 20% for internal validation). External validation was conducted using subsets of the MIMIC-III dataset and e-ICU dataset, and retrospective cohorts from the intensive care unit (ICU) of Northern Jiangsu People’s Hospital. Prospective data from the same ICU were used for validation and comparison with urinary CCL14 biomarker measurements. Acute kidney injury (AKI) was defined based on serum creatinine and urine output, using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria. Routine clinical data within the first 24 hours of ICU admission were collected, and 8 ML algorithms were used to construct the prediction model. Multiple evaluation metrics, including area under the receiver operating characteristic curve (AUC), were used to compare predictive performance. Feature importance was ranked using Shapley Additive Explanations (SHAP), and the final model was explained accordingly. In addition, the model was developed into a web-based application using the Streamlit framework to facilitate its clinical application. RESULTS A total of 46,097 patients with sepsis from multiple cohorts were enrolled for analysis. Among 17,928 patients with sepsis in the derivation cohort, 8081 patients (45.1%) showed progression to persistent SA-AKI. Among the 8 ML models, the gradient boosting machine (GBM) model demonstrated superior discriminative ability. Following feature importance ranking, a final interpretable GBM model comprising 12 features (AKI stage, ΔCreatinine, urine output, furosemide dose, BMI, Sequential Organ Failure Assessment score, kidney replacement therapy, mechanical ventilation, lactate, blood urea nitrogen, prothrombin time, and age) was established. The final model accurately predicted the occurrence of persistent SA-AKI in both internal (AUC=0.870) and external validation cohorts (MIMIC-III subset: AUC=0.891; e-ICU dataset: AUC=0.932; Northern Jiangsu People’s Hospital retrospective cohort: AUC=0.983). In the prospective cohort, the GBM model outperformed urinary CCL14 in predicting persistent SA-AKI (GBM AUC=0.852 vs CCL14 AUC=0.821). The model has been transformed into an online clinical tool to facilitate its application in clinical settings. CONCLUSIONS The interpretable GBM model was shown to successfully and accurately predict the occurrence of persistent SA-AKI, demonstrating good predictive ability in both internal and external validation cohorts. Furthermore, the model was demonstrated to outperform the biomarker CCL14 in prospective cohort validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢小盟完成签到 ,获得积分10
刚刚
吨吨完成签到,获得积分10
刚刚
林药师完成签到,获得积分10
刚刚
CipherSage应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
清脆的大开完成签到,获得积分10
4秒前
稳重母鸡完成签到 ,获得积分10
4秒前
飞翔的梦完成签到,获得积分10
6秒前
科目三应助Atticus采纳,获得10
6秒前
李彪完成签到 ,获得积分10
7秒前
势临完成签到 ,获得积分10
7秒前
SOL举报彩色诗云求助涉嫌违规
9秒前
孤独听雨的猫完成签到 ,获得积分10
12秒前
丰富的硬币应助wxnice采纳,获得10
12秒前
14秒前
江北完成签到 ,获得积分10
15秒前
15秒前
Atticus发布了新的文献求助10
17秒前
初之发布了新的文献求助10
18秒前
yang完成签到,获得积分10
20秒前
满意涵梅完成签到 ,获得积分10
20秒前
ddsyg126完成签到,获得积分10
21秒前
kyle完成签到 ,获得积分10
26秒前
nav发布了新的文献求助10
31秒前
安详的惜梦应助xyzlancet采纳,获得10
37秒前
千帆破浪完成签到 ,获得积分10
41秒前
BINBIN完成签到 ,获得积分10
41秒前
子爵木完成签到 ,获得积分10
47秒前
47秒前
50秒前
和谐诗双完成签到 ,获得积分10
52秒前
文迪发布了新的文献求助10
52秒前
fantastic完成签到,获得积分10
54秒前
xiao_J完成签到,获得积分10
1分钟前
吉吉完成签到,获得积分10
1分钟前
我是老大应助qing1245采纳,获得10
1分钟前
机智的雨寒完成签到,获得积分10
1分钟前
英姑应助nav采纳,获得10
1分钟前
wanna完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779296
求助须知:如何正确求助?哪些是违规求助? 3324813
关于积分的说明 10220097
捐赠科研通 3039971
什么是DOI,文献DOI怎么找? 1668528
邀请新用户注册赠送积分活动 798717
科研通“疑难数据库(出版商)”最低求助积分说明 758503