已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development, validation, and clinical evaluation of a machine-learning based model for diagnosing early infection after cardiovascular surgery (DEICS): a multi-center cohort study

医学 接收机工作特性 布里氏评分 逻辑回归 队列 随机森林 回顾性队列研究 机器学习 急诊医学 人工智能 外科 内科学 计算机科学
作者
Tuo Pan,Hai‐Tao Zhang,Chuangshi Wang,Hanghang Wang,Yusanjian Matniyaz,Zhi-Kang Lv,T. Zhu,Yapeng Wang,Zhi-Zhao Song,Yu-Xian Tang,He Zhang,Hao-Dong Pan,Chen Li,Linshan Yang,Shi-Yu Guan,Bian Wen,Xiateke Hafu,Xiang Li,Yang Li,Xiaoting Wu
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000002287
摘要

Background: This study addresses the critical need for timely and accurate diagnosis of early postoperative infection (EPI) following cardiac surgery. EPI significantly impacts patient outcomes and healthcare costs, making its early detection vital. Objectives: To develop, validate, and clinically implement a machine-learning-based model for diagnosing EPI post-cardiac surgery, enhancing postoperative care. Methods: In this multi-center cohort study spanning 2020 to 2022, data from four medical centers involved 2001 participants. Of these, 1400 were used for trainingand 601 for validation. Several machines-learning algorithms, including XGBoost, random forest, support vector machines, least absolute shrinkage and selection operator, and single-layer neural networks, were applied to develop predictive models. These were compared against a traditional logistic regression model. The model with the highest area under the receiver operating characteristic curve (AUROC) was deemed optimal. Implemented across four centers since 1 January 2023, a retrospective real-world study assessed its clinical applicability. Among 400 patients with an estimated EPI risk above 10%, identified by the optimal model, 55 followed its antibiotic upgrade recommendations (DEICS group). The remaining 345 patients upgraded antibiotics empirically, with 55 in the control group, matched 1:1 with the DEICS group. Clinical utility was evaluated through antibiotic use density (AUD), hospital costs, and ICU stay duration. Results: The XGBoost model achieved the highest performance with an AUROC of 0.96 (95% CI: 0.93–0.98). The calibration curve exhibited strong agreement with Brier scores of 0.02. According to the XGBoost model, the DEICS group significantly demonstrated reduced AUD ( P < 0.01) in the matched cohort, along with decreased ICU stay time (median: 5 vs. 6 days, P = 0.01) and hospital costs (median: ¥150 000 vs. median: ¥200 000, P = 0.01) in the EPI cohort. Conclusion: The successful implementation of the XGBoost model facilitates accurate EPI diagnosis, improves postoperative recovery, and lowers hospital costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木有完成签到 ,获得积分10
1秒前
李健应助干净以珊采纳,获得10
3秒前
干净以珊完成签到,获得积分20
11秒前
烟花应助Liujiayi采纳,获得10
14秒前
xu完成签到 ,获得积分10
14秒前
独特的初彤完成签到 ,获得积分10
15秒前
16秒前
17秒前
1L完成签到,获得积分10
17秒前
大模型应助好风青云采纳,获得10
19秒前
称心如意完成签到 ,获得积分10
20秒前
专注的月亮完成签到,获得积分10
22秒前
影落朝笙发布了新的文献求助10
23秒前
fishss完成签到 ,获得积分10
23秒前
慕青应助科研通管家采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得10
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
小马日常挨打完成签到 ,获得积分10
29秒前
桐桐应助LIUqi采纳,获得10
29秒前
勤劳襄发布了新的文献求助10
30秒前
善学以致用应助影落朝笙采纳,获得10
31秒前
科研通AI2S应助榴莲柿子茶采纳,获得10
35秒前
Thanatos完成签到,获得积分10
36秒前
37秒前
1771408007完成签到,获得积分10
37秒前
肉肉完成签到 ,获得积分10
40秒前
影落朝笙完成签到,获得积分10
41秒前
LIUqi发布了新的文献求助10
42秒前
44秒前
48秒前
Jason发布了新的文献求助10
48秒前
勤劳襄完成签到,获得积分10
48秒前
51秒前
win完成签到 ,获得积分10
52秒前
科研通AI2S应助Jason采纳,获得10
53秒前
正直美女完成签到 ,获得积分10
55秒前
HuLL完成签到 ,获得积分10
56秒前
58秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843144
求助须知:如何正确求助?哪些是违规求助? 3385441
关于积分的说明 10540379
捐赠科研通 3105997
什么是DOI,文献DOI怎么找? 1710830
邀请新用户注册赠送积分活动 823771
科研通“疑难数据库(出版商)”最低求助积分说明 774264